Comptes Rendus
Prediction of fatigue crack growth life under variable-amplitude loading using finite element analysis
Comptes Rendus. Mécanique, Volume 347 (2019) no. 8, pp. 576-587.

This article presents an elastic-plastic study aiming at predicting the fatigue crack growth (FCG) of 2024-T3 aluminum alloys under variable-amplitude loading. The proposed analysis needs the estimation of the residual stress distribution ahead of the crack tip during propagation. An elastic-plastic FE analysis has been implemented for modeling FCG using Chaboche's model. The FE study has been carried out through consideration of the loading history effect using the memory rules. Three different loading spectra have been applied in this work. The obtained results have been compared to the experimental ones and it has been proved that the suggested model has a better prediction of the FCG lives of cracked 2024-T3 aluminum alloy structures subjected to variable-amplitude loading.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2019.06.008
Mots clés : FCG life, Memory rules, Crack-tip, Residual stress, FEA, Variable amplitude loading

Amina Remadi 1 ; Ahmed Bahloul 1 ; Chokri Bouraoui 1

1 Mechanical Laboratory of Sousse, National Engineering School of Sousse, University of Sousse, BP 264, Erriadh, 4023 Sousse, Tunisia
@article{CRMECA_2019__347_8_576_0,
     author = {Amina Remadi and Ahmed Bahloul and Chokri Bouraoui},
     title = {Prediction of fatigue crack growth life under variable-amplitude loading using finite element analysis},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {576--587},
     publisher = {Elsevier},
     volume = {347},
     number = {8},
     year = {2019},
     doi = {10.1016/j.crme.2019.06.008},
     language = {en},
}
TY  - JOUR
AU  - Amina Remadi
AU  - Ahmed Bahloul
AU  - Chokri Bouraoui
TI  - Prediction of fatigue crack growth life under variable-amplitude loading using finite element analysis
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 576
EP  - 587
VL  - 347
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crme.2019.06.008
LA  - en
ID  - CRMECA_2019__347_8_576_0
ER  - 
%0 Journal Article
%A Amina Remadi
%A Ahmed Bahloul
%A Chokri Bouraoui
%T Prediction of fatigue crack growth life under variable-amplitude loading using finite element analysis
%J Comptes Rendus. Mécanique
%D 2019
%P 576-587
%V 347
%N 8
%I Elsevier
%R 10.1016/j.crme.2019.06.008
%G en
%F CRMECA_2019__347_8_576_0
Amina Remadi; Ahmed Bahloul; Chokri Bouraoui. Prediction of fatigue crack growth life under variable-amplitude loading using finite element analysis. Comptes Rendus. Mécanique, Volume 347 (2019) no. 8, pp. 576-587. doi : 10.1016/j.crme.2019.06.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.06.008/

[1] A.H. Noroozi; G. Glinka; S. Lambert A two parameter driving force for fatigue crack growth analysis, Int. J. Fatigue, Volume 27 (2005), pp. 1277-1296

[2] A.H. Noroozi; G. Glinka; S. Lambert A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force, Int. J. Fatigue, Volume 29 (2007), pp. 1616-1633

[3] M. Skorupa Load interaction effects during fatigue crack growth under variable-amplitude loading – a literature review, part I: empirical trends, Fatigue Fract. Eng. Mater. Struct., Volume 21 (1998), pp. 987-1006

[4] M. Skorupa Load interaction effects during fatigue crack growth under variable-amplitude loading – a literature review, part II: qualitative interpretation, Fatigue Fract. Eng. Mater. Struct., Volume 22 (1999), pp. 905-926

[5] A. Ray; R. Patankar Fatigue crack growth under variable-amplitude loading: part II – code development and model validation, Appl. Math. Model., Volume 25 (2001), pp. 995-1013

[6] A. Ray; R. Patankar Fatigue crack growth under variable-amplitude loading: part I – model formulation in state-space setting, Appl. Math. Model., Volume 25 (2001), pp. 979-994

[7] O.E. Wheeler Spectrum loading and crack growth, J. Basic Eng., Volume 94 (1972), pp. 181-186

[8] B.K.C. Yuen; F. Taheri Proposed modifications to the Wheeler retardation model for multiple overloading fatigue life prediction, Int. J. Fatigue, Volume 28 (2006), pp. 1803-1819

[9] W. Elber Fatigue crack closure under cyclic tension, Eng. Fract. Mech., Volume 2 (1970), pp. 35-47

[10] A.A.A. Espinosa; N.A. Fellows; J.F. Durodola Experimental measurement of crack opening and closure loads for 6082-T6 aluminium subjected to periodic single and block overloads and underloads, Int. J. Fatigue, Volume 47 (2013), pp. 71-82

[11] J. Codrington; A. Kotousov A crack closure model of fatigue crack growth in plates of finite thickness under small-scale yielding conditions, Mech. Mater., Volume 41 (2009), pp. 165-173

[12] A.H. Noroozi Development of a Two-Parameter Model (Kmax,ΔK) for Fatigue Crack Growth Analysis, University of Waterloo, Ontario, Canada, 2007 http://hdl.handle.net/10012/3020 (PhD Thesis)

[13] A.H. Noroozi; G. Glinka; S. Lambert A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force, Int. J. Fatigue, Volume 29 (2007), pp. 1616-1633

[14] G. Glinka; A. Buczynski Experimental and numerical analysis of elastic-plastic strains and stresses ahead of a growing fatigue crack, Gruppo Italiana Frattura, Forni di Sopra, Italy, 7–9 March (2011)

[15] H. Neuber Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law, J. Appl. Mech., Volume 28 (1961), pp. 544-550

[16] A. Ince; D. Bang Deviatoric Neuber method for stress and strain analysis at notches under multiaxial loadings, Int. J. Fatigue, Volume 102 (2017), pp. 229-240

[17] A. Ince; G. Glinka A numerical method for elasto-plastic notch-root stress–strain analysis, J. Strain Anal. Eng. Des., Volume 48 (2013), pp. 229-244

[18] A. Ince; G. Glinka; A. Buczynski Computational modeling of multiaxial elasto-plastic stress–strain response for notched components under non-proportional loading, Int. J. Fatigue, Volume 62 (2014), pp. 42-52

[19] S. Mikheevskiy; G. Glinka Elastic-plastic fatigue crack growth analysis under variable-amplitude loading spectra, Int. J. Fatigue, Volume 31 (2009), pp. 1828-1836

[20] J.A.F.O. Correia; S. Blasón; A.M.P. De Jesus; A.F. Canteli; P.M.G.P. Moreira; P.J. Tavares Fatigue life prediction based on an equivalent initial flaw size approach and a new normalized fatigue crack growth model, Eng. Fail. Anal., Volume 69 (2016), pp. 15-28

[21] D.J. Bang; A. Ince; L.Q. Tang A modification of UniGrow 2-parameter driving force model for short fatigue crack growth, Fatigue Fract. Eng. Mater. Struct., Volume 42 (2018), pp. 1-16

[22] S. Mikheevskiy; G. Glinka; D. Algera Analysis of fatigue crack growth in an attachment lug based on the weight function technique and the UniGrow fatigue crack growth model, Int. J. Fatigue, Volume 42 (2012), pp. 88-94

[23] R. Baxter; N. Hastings; A. Law; E.J. Glass Elastic field equation for blunt crack with reference to stress corrosion cracking, Int. J. Fract. Mech., Volume 39 (2008), pp. 561-563

[24] T. Sciences; T. Sireteanu; I.D.M. Solidelor Analytical method for fitting the Ramberg-Osgood model to given hysteresis loops analytical method for fitting the Ramberg-Osgood model, Proc. Rom. Acad., Volume 15 (2014), pp. 35-42

[25] A.M.P. De Jesus; J.A.F.O. Correia Critical assessment of a local strain-based fatigue crack growth model using experimental data available for the P355NL1 steel, J. Press. Vessel Technol., Volume 135 (2012), pp. 170-180

[26] S. Mikheevskiy; G. Glinka; E. Lee Fatigue crack growth analysis under spectrum loading in various environmental conditions, Metall. Mater. Trans. A, Phys. Metall. Mater. Sci., Volume 44 (2013), pp. 1301-1310

[27] S. Mikheevskiy; S. Bogdanov; G. Glinka Analysis of fatigue crack growth under spectrum loading – the UniGrow fatigue crack growth model, Theor. Appl. Fract. Mech., Volume 79 (2015), pp. 25-33

[28] S. Mikheevskiy; G. Glinka Elastic-Plastic Fatigue Crack Growth Analysis Under Variable-Amplitude Loading Spectra, University of Waterloo, Ontario, Canada, 2009

[29] E. Castillo; A. Fernández Canteli; D. Siegele Obtaining SN curves from crack growth curves: an alternative to self-similarity, Int. J. Fract., Volume 187 (2014), pp. 159-172

[30] A. Fernández Canteli; C. Przybilla; M. Nogal; M. López Aenlle; E. Castillo ProFatigue: a software program for probabilistic assessment of experimental fatigue data sets, Verbania, Italy, 25–27 May (Proc. Eng.), Volume 74 (2014), pp. 236-241

[31] E. Castillo; A. Fernández-Canteli A Unified Statistical Methodology for Modeling Fatigue Damage, Springer, 2009

[32] S. Blasón; A. Fernández Canteli; C. Rodríguez Fatigue characterization of a crankshaft steel: use and interaction of new models, Frattura Integr. Strutt., Volume 35 (2016), pp. 524-532

[33] T. Kebir; B. Mohamed; M. Abdelkader Simulation of the cyclic hardening behavior of aluminum alloys simulation of the cyclic hardening behavior of aluminum alloys, Mech. Eng., Volume 79 (2017), pp. 240-250

[34] Mohammad Hadi Hafezi; N. Nik Abdullah José; F.O. Correia Abílio; M.P. De Jesus An assessment of a strain-life approach for fatigue crack growth, Int. J. Struct. Integr., Volume 3 (2012), pp. 344-376

[35] G. Shen; G. Glinka Determination of weight functions from reference stress intensity factors, Theor. Appl. Fract. Mech., Volume 15 (1991), pp. 237-245

[36] P. Livieri; F. Segala; O. Ascenzi Analytic evaluation of the difference between Oore-Burns and Irwin stress intensity factor for elliptical cracks, Acta Mech., Volume 105 (2005), pp. 95-105

[37] A. Bahloul Deterministic and Probabilistic Analysis of Fatigue Crack Growth Prediction by Crack Growth Analysis, National Engineering School of Sousse, ENISo, Sousse, Tunisia, 2017

[38] G. Glinka; G. Shen Universal features of weight functions for cracks in mode I, Eng. Fract. Mech., Volume 40 (1991), pp. 1135-1146

[39] A. Bahloul; C.H. Bouraoui; T. Boukharouba Prediction of fatigue life by crack growth analysis, Int. J. Adv. Manuf. Technol. (2017), pp. 4009-4017

[40] A.S. Ribeiro; A.P. Jesus; J.M. Costa; L.P. Borrego; J.C. Maeiro Variable amplitude fatigue crack growth modelling, Guimarães, Portugal, 21–23 April (2010)

[41] M.A. Miner Cumulative damage in fatigue, J. Appl. Mech., Volume 12 (1945), pp. 159-164

[42] ABAQUS/Standard User's Manual, Version 6.14.

[43] A. Bahloul; C.H. Bouraoui The overload effect on the crack tip cyclic plastic deformation response in SA333 Gr 6 C–Mn steel, Theor. Appl. Fract. Mech., Volume 99 (2018), pp. 27-35

Cité par Sources :

Commentaires - Politique