Comptes Rendus
Epitaxial self-organization: from surfaces to magnetic materials
[Auto-organisation épitaxiale : des surfaces aux matériaux magnétiques]
Comptes Rendus. Physique, Volume 6 (2005) no. 1, pp. 61-73.

Alors que l'auto-organisation est un domaine maintenant consacré pour les semi-conducteurs, il est en émergence pour les matériaux magnétiques, avec une activité soutenue les cinq dernières années. Un panorama des contributions de l'auto-organisation au magnétisme est proposé ici, avec pour but de montrer les possibilités nouvelles offertes, notamment par rapport à la lithographie. Une première catégorie d'études concerne la mesure et la compréhension de phénomènes magnétiques en basse dimensionnalité, qui existent dans les matériaux applicatifs mais ne peuvent y être étudiés quantitativement du fait de leur complexité : mise en ordre magnétique, anisotropie magnétique, superparamagnétisme. Une seconde catégorie concerne la perspective de l'utilisation directe de systèmes auto-organisés. Des exemples sont donnés pour combattre le superparamagnétisme en fabriquant des structures auto-organisées épaisses, ou établir des fonctionnalités nouvelles, notamment le contrôle de l'anisotropie et de la dispersion de propriétés.

Self-organization of magnetic materials is an emerging and active field. An overview of the use of self-organization for magnetic purposes is given, with a view to illustrate aspects that cannot be covered by lithography. A first set of issues concerns the quantitative study of low-dimensional magnetic phenomena (1D and 0D). Such effects also occur in microstructured and lithographically-patterned materials but cannot be studied in these because of the complexity of such materials. This includes magnetic ordering, magnetic anisotropy and superparamagnetism. A second set of issues concerns the possibility to directly use self-organization in devices. Two sets of examples are given: first, how superparamagnetism can be fought by fabricating thick self-organized structures, and second, what new or improved functionalities can be expected from self-organized magnetic systems, like the tailoring of magnetic anisotropy or controlled dispersion of properties.

Publié le :
DOI : 10.1016/j.crhy.2004.11.007
Keywords: Self-organization, Self-assembly, Magnetism, Magnetic anisotropy, Micromagnetism, Superparamagnetism
Mot clés : Auto-organisation, Auto-assemblage, Magnétisme, Anisotropie magnétique, Micromagnétisme, Superparamagnétisme
Olivier Fruchart 1

1 Laboratoire Louis Néel (CNRS), 25, avenue des Martyrs, BP166, 38042 Grenoble cedex 9, France
@article{CRPHYS_2005__6_1_61_0,
     author = {Olivier Fruchart},
     title = {Epitaxial self-organization: from surfaces to magnetic materials},
     journal = {Comptes Rendus. Physique},
     pages = {61--73},
     publisher = {Elsevier},
     volume = {6},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crhy.2004.11.007},
     language = {en},
}
TY  - JOUR
AU  - Olivier Fruchart
TI  - Epitaxial self-organization: from surfaces to magnetic materials
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 61
EP  - 73
VL  - 6
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.11.007
LA  - en
ID  - CRPHYS_2005__6_1_61_0
ER  - 
%0 Journal Article
%A Olivier Fruchart
%T Epitaxial self-organization: from surfaces to magnetic materials
%J Comptes Rendus. Physique
%D 2005
%P 61-73
%V 6
%N 1
%I Elsevier
%R 10.1016/j.crhy.2004.11.007
%G en
%F CRPHYS_2005__6_1_61_0
Olivier Fruchart. Epitaxial self-organization: from surfaces to magnetic materials. Comptes Rendus. Physique, Volume 6 (2005) no. 1, pp. 61-73. doi : 10.1016/j.crhy.2004.11.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.007/

[1] Y. Arakawa; H. Sakaki Multidimensional quantum well laser and temperature dependence of its threshold current, Appl. Phys. Lett., Volume 40 (1982), pp. 939-941

[2] M. Asada; Y. Miyamoto; Y. Suematsu Gain and the threshold of three dimensional quantum-box lasers, IEEE J. Quantum Elect., Volume 22 (1986), pp. 1915-1921

[3] H. Mariette Key parameters for the formation of self-assembled quantum dots induced by the Stranski–Krastanov transition: a comparison for various semiconductor systems, C. R. Physique, Volume 6 (2005) no. 1

[4] J.P. Reithmaier; A. Forchel Recent advances in semiconductor quantum-dot lasers, C. R. Physique, Volume 4 (2003), pp. 611-619

[5] V. Berger; J.-M. Gérard Sources semiconductrices de photons uniques ou de photons jumeaux pour l'information quantique, C. R. Physique, Volume 4 (2003), pp. 701-713

[6] (P. Michler, ed.), Single Quantum Dots: Fundamentals, Applications and New Concepts, Springer, Heidelberg, 2003

[7] U. Lüders; F. Sánchez; J. Fontcuberta Initial stages in the growth of 111-faceted CoCr2O4 clusters: mechanisms and strained nanometric pyramids, Appl. Phys. A, Volume 79 (2004) no. 1, pp. 93-97

[8] H. Zheng; J. Wang; S.E. Lofland; Z. Ma; L. Mohaddes-Ardabili; T. Zhao; L. Salamanca-Riba; S.R. Shinde; S.B. Ogale; F. Bai; D. Viehland; Y. Jia; D.G. Schlom; M. Wuttig; A. Roytburd; R. Ramesh Multiferroic BaTiO3–CoFe2O4 nanostructures, Science, Volume 303 (2004), pp. 661-663

[9] E. Vasco; R. Dittmann; S. Karthäuser; R. Waser Early self-assembled stages in epitaxial SrRuO3 on LaAlO3, Appl. Phys. Lett., Volume 82 (2003) no. 15, p. 2497

[10] M. Albrecht; A. Maier; F. Treubel; M. Maret; R. Poinsot; G. Schatz Self-assembled magnetic nanostructures of CoPt3 with favoured chemical ordering, Europhys. Lett., Volume 56 (2001) no. 6, pp. 884-890

[11] X. Ma; H.L. Meyerheim; J. Barthel; J. Kirschner; S. Schmitt; E. Umbach Self-assembled magnetic nanostripes by organic patterning, Appl. Phys. Lett., Volume 84 (2004) no. 20, pp. 4038-4040

[12] D.D. Chambliss; R.J. Wilson; S. Chiang Nucleation of ordered Ni islands arrays on Au(111) by surface-lattice dislocations, Phys. Rev. Lett., Volume 66 (1991) no. 13, pp. 1721-1724

[13] W.G. Cullen; P.N. First Island shapes and intermixing for submonolayer nickel on Au(111), Surf. Sci., Volume 420 (1999), pp. 53-64

[14] B. Voigtländer; G. Meyer; N.M. Amer Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy, Phys. Rev. B, Volume 44 (1991) no. 18, pp. 10354-10357

[15] S. Shiraki; H. Fujisawa; M. Nantoh; M. Kawai Confining barriers for surface state electrons tailored by monatomic Fe rows on vicinal Au(111) surfaces, Phys. Rev. Lett., Volume 92 (2004) no. 9, p. 096102

[16] T.M. Parker; L.K. Wilson; N.G. Condon; F.M. Leibsle Epitaxy controlled by self-assembled nanometer-scale structure, Phys. Rev. B, Volume 56 (1997) no. 11, pp. 6458-6461

[17] S.L. Silva; C.R. Jenkins; S.M. York; F. Leibsle Fabricating nanometer-scale Co dots and line arrays on Cu(100) surfaces, Appl. Phys. Lett., Volume 76 (2000) no. 9, pp. 1128-1130

[18] T. Fujita; Y. Okawa; K. Tanaka STM study of preferencial growth of one-dimensional nickel islands on a Cu(110)–(22×2)R45°–O surface, Appl. Surf. Sci., Volume 130–132 (1998), pp. 491-496

[19] A. Kida; H. Kajiyama; S. Heike; T. Hashizume; K. Koike Self-organized growth of Fe nanowire array on H2O/Si(100)(2×n), Appl. Phys. Lett., Volume 75 (1999) no. 4, pp. 540-542

[20] Z. Gai; B. Wu; J.P. Pierce; G.A. Farnan; D. Shu; M. Wang; Z. Zhang; J. Shen Self-assembly of nanometer-scale magnetic dots with narrow size distributions on an insulating substrate, Phys. Rev. Lett., Volume 89 (2002) no. 23, p. 235502

[21] H. Takeshita; Y. Suzuki; H. Akinaga; W. Mizutani; K. Ando; T. Takayama; A. Itoh; K. Tanaka Magnetization process of a nanometer-scale cobalt dots array formed on a reconstructed Au(111) surface, J. Magn. Magn. Mater., Volume 165 (1997), pp. 38-41

[22] A. Sugawara; G.G. Hembree; M.R. Scheinfein Self-organized mesoscopic magnetic structures, J. Appl. Phys., Volume 82 (1997) no. 11, pp. 5662-5669

[23] A. Mougin; C. Dufour; K. Dumesnil; N. Maloufi; P. Mangin DyFe2(110) nanostructures: morphology and magnetic anisotropy, Appl. Phys. Lett., Volume 76 (2000) no. 11, pp. 1449-1451

[24] F.J. Himpsel; J.E. Ortega; G.J. Mankey; R.F. Willis Magnetic nanostructures, Adv. Phys., Volume 47 (1998) no. 4, pp. 511-597

[25] J.I. Martin; J. Nogués; K. Liu; J.L. Vicent; I.K. Schuller Ordered magnetic nanostructures: fabrication and properties, J. Magn. Magn. Mater., Volume 256 (2003), pp. 449-501

[26] R. Skomski Nanomagnetics, J. Phys.: Cond. Mat., Volume 15 (2003), pp. R841-896

[27] J.F. Bobo; L. Gabillet; M. Bibes Recent advances in nanomagnetism and spin electronics, J. Phys.: Cond. Mat., Volume 16 (2004), p. S471-S496

[28] J.P. Bucher Magnetism of free and supported metal clusters (S.N. Khanna; A.W. Castleman, eds.), Quantum Phenomena in Clusters and Nanostructures, Springer Series in Cluster Physics, Springer, Berlin, 2003, pp. 83-137

[29] J.P. Bucher; F. Scheurer Self-organized clusters and nanosize islands on metal surfaces (J.S. Miller; M. Drillon, eds.), Magnetism: Molecules to Materials III, Wiley–VCH, Weinheim, Germany, 2002, pp. 211-251

[30] B. Chaudret Organometallic approach to nanoparticles synthesis and self-organization, C. R. Physique, Volume 6 (2003) no. 1

[31] R. Cheng; J. Pearson; H.F. Ding; V. Metlushko; S.D. Bader; F.Y. Fradin; D. Li Self-assembled epitaxial magnetic lateral structures on Ru: controlling the shape and placement, Phys. Rev. B, Volume 69 (2004), p. 184409

[32] J. Hauschild; H.J. Elmers; U. Gradmann Dipolar superferromagnetism in monolayer nanostripes of Fe(110) on vicinal W(110) surfaces, Phys. Rev. B, Volume 57 (1998) no. 2, p. R677

[33] D. Li; B. Roldan Cuenya; J. Pearson; S.D. Bader; W. Keune Magnetism of step-decorated Fe on Pd(110), Phys. Rev. B, Volume 64 (2001), p. 144410

[34] L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., Volume 65 (1944), pp. 117-149

[35] S.T. Bramwell; P.C.W. Holdsworth Magnetization and universal sub-critical behavior in two-dimensional XY magnets, J. Phys.: Cond. Mat., Volume 5 (1993), p. L53

[36] N.D. Mermin; H. Wagner Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett., Volume 17 (1966), pp. 1133-1136

[37] H.J. Elmers; G. Liu; U. Gradmann Magnetometry of the ferromagnetic monolayer Fe(110) on W(110) coated with Ag, Phys. Rev. Lett., Volume 63 (1989), pp. 566-569

[38] H.J. Elmers; J. Hauschild; H. Höche; U. Gradmann; H. Bethge; D. Heuer; U. Köhler Submonolayer magnetism of Fe(110) on W(110): finite width scaling of stripes and percolation between islands, Phys. Rev. Lett., Volume 73 (1994) no. 6, pp. 901-989

[39] J. de la Figuera; M.A. Huerta-Garnica; J.E. Prieto; C. Ocal; R. Miranda Fabrication of magnetic quantum wires by step-flow growth of cobalt on copper surfaces, Appl. Phys. Lett., Volume 66 (1985) no. 8, pp. 1006-1008

[40] J. Shen; R. Skomsky; M. Klaua; H. Jenniches; S.S. Manoharan; J. Jirschner Magnetism in one dimension: Fe on Cu(111), Phys. Rev. B, Volume 56 (1997) no. 5, pp. 2340-2343

[41] A. Dallmeyer; C. Carbone; W. Eberhardt; C. Pampuch; O. Rader; W. Gudat; P. Gambardella; K. Kern Electronic states and magnetism of monoatomic Co and Cu wires, Phys. Rev. B, Volume 61 (2000) no. 8, p. R5133-R5136

[42] P. Gambardella Magnetism in monatomic metal wires, J. Phys.: Cond. Mat., Volume 15 (2003), p. S2533-S2546

[43] G.A.T. Allan Critical temperatures of Ising Lattice Films, Phys. Rev. B, Volume 1 (1970) no. 1, pp. 352-357

[44] P. Gambardella; A. Dallmeyer; K. Maiti; M.C. Malagoli; W. Eberhardt; K. Kern; C. Carbone Ferromagnetism in one-dimensional monoatomic metal chains, Nature, Volume 416 (2002), pp. 301-304

[45] S. Rusponi; T. Cren; N. Weiss; M. Epple; L. Claude; P. Buluschek; H. Brune The remarkable difference between surface and step atoms in the magnetic anisotropy of 2D nanostructures, Nat. Mater., Volume 2 (2003), p. 546

[46] N. Weiss, T. Cren, M. Epple, S. Rusponi, G. Baudot, V. Repain, S. Rousset, H. Brune, Magnetism of uniaxial ultra-high density Co superlattices on Au(788), in preparation

[47] M. Bode; O. Pietzsch; A. Kubetzka; R. Wiesendanger Shape-dependent thermal switching behavior of superparamagnetic nanoislands, Phys. Rev. Lett., Volume 92 (2004) no. 6, p. 067201

[48] L. Néel Influence des fluctuations thermiques sur l'aimantation de grains ferromagnétiques très fins, C. R. Acad. Sci., Volume 228 (1949), pp. 664-668

[49] W.F. Brown Thermal fluctuations of a single-domain particle, Phys. Rev., Volume 130 (1963), p. 1677

[50] R.W. Chantrell; N.Y. Ayoub; J. Popplewell The low field susceptibility of a textured superparamagnetic system, J. Magn. Magn. Mater., Volume 53 (1985), pp. 199-207

[51] O. Fruchart; P.-O. Jubert; C. Meyer; M. Klaua; J. Barthel; J. Kirschner Vertical self-organization of epitaxial magnetic nanostructures, J. Magn. Magn. Mater., Volume 239 (2002), pp. 224-227

[52] P. Gambardella; S. Rusponi; T. Cren; H. Brune Magnetic anisotropy from single atoms to large monodomain islands on a metal surface, C. R. Physique, Volume 6 (1986) no. 1

[53] W.F. Brown Magnetostatic Principles in Ferromagnetism, North-Holland, Amsterdam, 1962

[54] T.S. Moon; R.T. Merrill Nucleation theory and domain states in multidomain magnetic material, Phys. Earth Planet. In., Volume 37 (1985), pp. 214-222

[55] S. Padovani; I. Chado; F. Scheurer; J.-P. Bucher Transition from zero-dimensional superparamagnetism to two-dimensional ferromagnetism of Co clusters on Au(111), Phys. Rev. B, Volume 59 (1999) no. 18, pp. 11887-11891

[56] M. Bode Spin-polarized scanning tunnelling microscopy, Rev. Prog. Phys., Volume 66 (2003), pp. 523-582

[57] W. Wernsdorfer Classical and quantum magnetization reversal studies in nanometer-sized particles and clusters (I. Prigogine; S.A. Rice, eds.), Advances in Chemical Physics, vol. 118, Wiley, 2001, pp. 99-190

[58] L. Néel Anisotropie magnétique superficielle et surstructures d'orientation, J. Phys. Rad., Volume 15 (1954), pp. 225-239

[59] U. Gradmann; J. Müller Flat ferromagnetic epitaxial 48Ni/52Fe(111) films of few atomic layers, Phys. Status Solidi, Volume 27 (1968), p. 313

[60] P. Bruno Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers, Phys. Rev. B, Volume 39 (1989), pp. 865-868

[61] D. Weller; J. Stöhr; R. Nakajima; A. Carl; M.G. Samant; C. Chappert; R. Mégy; P. Beauvillain; P. Veillet; G.A. Held Microscopic origin of magnetic anisotropy in Au/Co/Au probed with X-ray magnetic circular dichroism, Phys. Rev. Lett., Volume 75 (1995) no. 20, pp. 3753-3755

[62] J. Stöhr Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy, J. Magn. Magn. Mater., Volume 200 (1999), pp. 470-497

[63] P. Gambardella; S.S. Dhesi; S. Gardonio; C. Grazioli; P. Ohresser; C. Carbone Localized magnetic states of Fe, Co, and Ni impurities on Alkali Metal Films, Phys. Rev. Lett., Volume 88 (2002) no. 4, p. 047202

[64] P. Gambardella; S. Rusponi; M. Veronese; S.S. Dhesi; C. Grazioli; A. Dallmeyer; I. Cabria; R. Zeller; P.H. Dederichs; K. Kern; C. Carbone; H. Brune Giant magnetic anisotropy of single cobalt atoms and nanoparticles, Science, Volume 300 (2003) no. 5622, pp. 1130-1133

[65] H. Dürr; S.S. Dhesi; E. Dudzik; D. Knabben; G. van der Laan; J. Goedkoop; F. Hillebrecht Spin and orbital magnetization in self-assembled Co clusters on Au(111), Phys. Rev. B, Volume 59 (1999) no. 2, p. R701-R704

[66] T. Koide; H. Miyauchi; J. Okamoto; T. Shidara; A. Fujimori; H. Fukutani; K. Amemiya; H. Takeshita; S. Yuasa; T. Katayama; Y. Suzuki Direct determination of interfacial magnetic moments with a magnetic phase transition in Co nanoclusters on Au(111), Phys. Rev. Lett., Volume 87 (2001), p. 257201

[67] P. Ohresser; N.B. Brookes; S. Padovani; F. Scheurer; H. Bulou Magnetism of small Fe clusters on Au(111) studied by X-ray magnetic circular dichroism, Phys. Rev. B, Volume 64 (2001), p. 104429

[68] M. Albrecht; U. Gradmann; T. Furubayashi; W.A. Harrison Magnetic moments in rough Fe surfaces, Europhys. Lett., Volume 20 (1992) no. 1, pp. 65-70

[69] U. Gradmann; T. Dürkop; H.J. Elmers Magnetic moments and anisotropies in smooth and rough surfaces and interfaces, J. Magn. Magn. Mater., Volume 165 (1997), pp. 56-61

[70] P. Gambardella; A. Dallmeyer; K. Maiti; M.C. Malagoli; S. Rusponi; P. Ohresser; W. Eberhardt; C. Carbone; K. Kern Oscillatory magnetic anisotropy in one-dimensional atomic wires, Phys. Rev. Lett., Volume 93 (2004) no. 7, p. 077203

[71] M. Kawamura; N. Paul; V. Cherepanov; B. Voigtländer Nanowires and nanorings at the atomic level, Phys. Rev. Lett., Volume 91 (2004) no. 9, p. 096102

[72] E.D. Tober; R.F.C. Farrow; R.F. Marks; G. Witte; K. Kalki; D.D. Chambliss Self-assembled lateral multilayers from thin film alloys of immiscible metals, Phys. Rev. Lett., Volume 81 (1998) no. 9

[73] E.D. Tober; R.F. Marks; D.D. Chambliss; K.P. Roche; M.F. Toney; A.J. Kellock; R.F.C. Farrow Magnetoresistance of self-assembled lateral multilayers, Appl. Phys. Lett., Volume 77 (2000) no. 17, pp. 2728-2730

[74] S. Sun; C.B. Murray; D. Weller; L. Folks; A. Moser Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science, Volume 287 (2000), pp. 1989-1992

[75] W. Wulfhekel; F. Zavaliche; F. Porrati; H.P. Oepen; J. Kirschner Nano-patterning of magnetic anisotropy by controlled strain relief, Europhys. Lett., Volume 49 (2000), pp. 651-657

[76] W. Wulfhekel; F. Zavaliche; R. Hertel; S. Bodea; G. Steierl; G. Liu; J. Kirschner; H.P. Oepen Growth and magnetism of Fe nanostructures on W(001), Phys. Rev. B, Volume 68 (2003), p. 144416

[77] A. Wachowiak; J. Wiebe; M. Bode; O. Pietzsch; M. Morgenstern; R. Wiesendanger Direct observation of internal spin structure of magnetic vortex cores, Science, Volume 298 (2002), pp. 577-580

[78] A. Hubert; R. Schäfer Magnetic domains. The Analysis of Magnetic Microstructures, Springer, Berlin, 1999

[79] O. Pietzsch; A. Kubetzka; M. Bode; R. Wiesendanger Spin-polarized scanning tunneling spectroscopy of nanoscale cobalt islands on Cu(111), Phys. Rev. Lett., Volume 92 (2004) no. 5, p. 057202

[80] P.O. Jubert; J.C. Toussaint; O. Fruchart; C. Meyer; Y. Samson Flux-closure-domain states and demagnetizing energy determination in sub-micron size magnetic dots, Europhys. Lett., Volume 63 (2003) no. 1, pp. 135-141

[81] T. Shinjo; T. Okuno; R. Hassdorf; K. Shigeto; T. Ono Magnetic vortex core observation in circular dots of permalloy, Science, Volume 289 (2000), p. 930

[82] P. Bruno Geometrically constrained magnetic wall, Phys. Rev. Lett., Volume 83 (1999) no. 12, p. 2425

[83] O. Pietzsch; A. Kubetzka; M. Bode; R. Wiesendanger Real-space observation of dipolar antiferromagnetism in magnetic nanowires by spin-polarized scanning tunneling spectroscopy, Phys. Rev. Lett., Volume 84 (2000) no. 22, pp. 5212-5215

[84] H.R. Hilzinger; H. Kronmüller Analytical derivation of spin configuration and intrinsic coercive field of a narrow domain wall, Phys. Stat. Sol. B, Volume 59 (1973) no. 1, pp. 71-77

[85] U. Gradmann Magnetism in ultrathin transition metal films (K.H.J. Buschow, ed.), Handbook of Magnetic Materials, vol. 7, Elsevier, North Holland, 1993, pp. 1-96 (Ch. 1)

[86] P.-O. Jubert; R. Allenspach Analytical approach to the single-domain-to-vortex transition in small magnetic disks, Phys. Rev. B, Volume 70 (2004), p. 144402

[87] A. Yamasaki; W. Wulfhekel; R. Hertel; S. Suga; J. Kirschner Direct observation of the single-domain limit of fe nanomagnets by spin-polarized scanning tunneling spectroscopy, Phys. Rev. Lett., Volume 91 (2003) no. 12, p. 127201

[88] P.-O. Jubert; O. Fruchart; C. Meyer Self-assembled growth of facetted epitaxial Fe(110) islands on Mo(110), Phys. Rev. B, Volume 64 (2001), p. 115419

[89] M. Bode; A. Wachowiak; J. Wiebe; A. Kubetzka; M. Morgenstern; R. Wiesendanger Thickness dependent magnetization states of Fe islands on W(110): from single domain to vortex and diamond patterns, Appl. Phys. Lett., Volume 84 (2004) no. 6, pp. 948-950

[90] H.F. Ding, A.K. Schmid, D. Li, K. Yu Guslienko, S.D. Bader, Magnetic bi-stability of Co nanodots, submitted for publication

[91] O. Fruchart; J.C. Toussaint; P.-O. Jubert; W. Wernsdorfer; R. Hertel; J. Kirschner; D. Mailly Angular-dependence of magnetization switching for a multi-domain dot: experiment and simulation, Phys. Rev. B Brief Report, Volume 70 (2004), p. 172409

[92] M. Hehn; K. Ounadjela; J.P. Bucher; F. Rousseaux; D. Decanini; B. Bartenlian; C. Chappert Nanoscale magnetic domains in mesoscopic magnets, Science, Volume 272 (1996), pp. 1782-1785

[93] W. Rave; K. Fabian; A. Hubert Magnetic states of small cubic particles with uniaxial anisotropy, J. Magn. Magn. Mater., Volume 190 (1998), pp. 332-348

[94] O. Fruchart, R. Hertel, S. Cherifi, P.-O. Jubert, A. Locatelli, S. Heun, in preparation

[95] O. Fruchart; M. Eleoui; J. Vogel; P.-O. Jubert; A. Locatelli; A. Ballestrazzi Nanometers-thick self-organized Fe stripes: bridging the gap between surfaces and magnetic materials, Appl. Phys. Lett., Volume 84 (2004) no. 8, pp. 1335-1337

[96] G. Springholz Three-dimensional stacking of self-assembled quantum dots in multilayer structures, C. R. Physique, Volume 6 (2005) no. 1

[97] O. Fruchart; M. Klaua; J. Barthel; J. Kirschner Self-organized growth of nanosized vertical magnetic pillars on Au(111), Phys. Rev. Lett., Volume 83 (1999) no. 14, pp. 2769-2772

[98] O. Fruchart; M. Klaua; J. Barthel; J. Kirschner Growth of self-organized nanosized Co pillars in Au(111) using an alternating deposition process, Appl. Surf. Sci., Volume 162–163 (2000), pp. 529-536

[99] S. Cherifi; C. Boeglin; S. Stanescu; J.P. Deville; C. Mocuta; H. Magnan; P. Le Fèvre; P. Ohresser; N.B. Brookes Step-induced in-plane orbital anisotropy in FeNi films on Cu(111) probed by magnetic circular x-ray dichroism, Phys. Rev. B, Volume 64 (2001), p. 184405

[100] S. Pokrant; O. Fruchart; C. Meyer; L. Ortega Growth of Tb(0001) on Nb and Mo(110) surfaces, Surf. Sci., Volume 506 (2002), pp. 235-242

[101] A. Encinas; F. Nguyen Van Dau; A. Schuhl; F. Montaigne; M. Sussiau; P. Galtier Properties of spin-valve structures deposited on step-bunched vicinal surfaces, J. Magn. Magn. Mater., Volume 198–199 (1999), pp. 15-17

[102] S. Rousset; V. Repain; G. Baudot; H. Ellmer; Y. Garreau; V. Etgens; J.M. Berroir; B. Croset; M. Sotto; P. Zeppenfeld; J. Ferré; J.P. Jamet; C. Chappert; J. Lecoeur Self-ordering on crystal surfaces: fundamentals and applications, Mater. Sci. Engrg. B, Volume 96 (2002), pp. 169-177

[103] R. Moroni; D. Sekiba; F. Buatier de Mongeot; G. Gonella; C. Boragno; L. Mattera; U. Valbusa Uniaxial magnetic anisotropy in nanostructured Co/Cu(001): from surface ripples to nanowires, Phys. Rev. Lett., Volume 91 (2003) no. 16, p. 167207

[104] C. Teichert Self-organization of nanostructures in semiconductor heteroepitaxy, Phys. Rep., Volume 365 (2002), pp. 335-432

[105] A. Westphalen; H. Zabel; K. Theis-Bröhl Magnetic nanowires on faceted sapphire surfaces, Thin Solid Films, Volume 449 (2004), pp. 207-214

[106] B. Borca, C. Meyer, O. Fruchart, unpublished data

[107] A. Klein; A. Schmidt; L. Hammer; L. Heinz Lateral nanoscale Fe–Ir superlattices on Ir(100), Europhys. Lett., Volume 65 (2004) no. 6, pp. 830-836

[108] M. Albrecht; M. Maret; A. Maier; F. Treubel; B. Riedlinger; U. Mazur; G. Schatz; S. Anders Perpendicular magnetic anisotropy in CoPt3(111) films grown on a low energy surface at room temperature, J. Appl. Phys., Volume 91 (2002) no. 10, pp. 8153-8155

[109] J.C. Jianga; E.I. Meletis; K.I. Gnanasekar Self-organized, ordered array of coherent orthogonal column nanostructures in epitaxial La0.8Sr0.2MnO3 thin films, Appl. Phys. Lett., Volume 80 (2002) no. 25, p. 4831

[110] V. Repain; G. Baudot; H. Ellmer; S. Rousset Ordered growth of cobalt nanostructures on a Au(111) vicinal surface: nucleation mechanisms and temperature behavior, Mater. Sci. Engrg. B, Volume 96 (2002), pp. 178-187

[111] J. Eymery; G. Biasiol; E. Kapon; T. Ogino Nanometric artificial structuration of semiconductor surfaces for crystalline growth, C. R. Physique, Volume 6 (2005) no. 1

[112] C. Yu; D. Li; J. Pearson; S.D. Bader Alignment of self-assembled magnetic nanostructures: Co dot chains and stripes on grooved Ru(0001), Appl. Phys. Lett., Volume 79 (2001) no. 23, p. 3848

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Magnetism in reduced dimensions

Olivier Fruchart; André Thiaville

C. R. Phys (2005)


Self-organization on surfaces: foreword

Olivier Fruchart

C. R. Phys (2005)