Comptes Rendus
Critical velocities in superfluids and the nucleation of vortices
[Vitesses critiques dans les superfluides et nucléation de tourbillons]
Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, pp. 1101-1120.

La vitesse critique dans les superfluides, c'est-à-dire la destruction de la superfluidité par l'écoulement du fluide, pose un problème qui perdure. Une des difficultés réside dans l'existence de plusieurs mécanismes pour cette destruction. L'observation de sauts de phase individuels de 2π, qui proviennent de la nucléation de tourbillons quantifiés, a constitué une avancée importante. L'identification et l'analyse des propriétés stochastiques du processus de nucléation, tant dans le régime classique que quantique, ont conduit à l'étude très circonstanciée d'un cas spécifique d'effet tunnel macroscopique. En particulier, l'examen fouillé des données expérimentales obtenues avec l'hélium ultra-pur a révélé l'influence de la dissipation sur l'effet tunnel, donnant par là un exemple rare d'interaction d'un processus tunnel avec son environnement macroscopique.

The problem of critical velocities in superfluids, that is the comprehension of superfluidity breakdown by flow, has been long standing. One difficulty stems from the existence of several breakdown mechanisms. A major advance has come from the observation of single 2π phase slips, which arise from the nucleation of quantised vortices, that is, their creation ex nihilo. The statistical properties of the nucleation process in both the thermal regime and the quantum regime are identified and analysed: vortex nucleation provides a well-documented case of macroscopic quantum tunnelling (MQT). In particular, a close scrutiny of the experimental data obtained on ultra-pure 4He reveals the influence of damping on tunnelling, a rare occurrence where the effect of the environment on MQT can be studied.

Publié le :
DOI : 10.1016/j.crhy.2006.10.023
Éric Varoquaux 1, 2

1 CNRS-Université Paris-sud, Laboratoire de physique des solides, bâtiment 510, 91405 Orsay cedex, France
2 Commissariat à l'énergie atomique, service de physique de l'état condensé, bâtiment 772, centre de Saclay, 91191 Gif-sur-Yvette cedex, France
@article{CRPHYS_2006__7_9-10_1101_0,
     author = {\'Eric Varoquaux},
     title = {Critical velocities in superfluids and the nucleation of vortices},
     journal = {Comptes Rendus. Physique},
     pages = {1101--1120},
     publisher = {Elsevier},
     volume = {7},
     number = {9-10},
     year = {2006},
     doi = {10.1016/j.crhy.2006.10.023},
     language = {en},
}
TY  - JOUR
AU  - Éric Varoquaux
TI  - Critical velocities in superfluids and the nucleation of vortices
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 1101
EP  - 1120
VL  - 7
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.10.023
LA  - en
ID  - CRPHYS_2006__7_9-10_1101_0
ER  - 
%0 Journal Article
%A Éric Varoquaux
%T Critical velocities in superfluids and the nucleation of vortices
%J Comptes Rendus. Physique
%D 2006
%P 1101-1120
%V 7
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2006.10.023
%G en
%F CRPHYS_2006__7_9-10_1101_0
Éric Varoquaux. Critical velocities in superfluids and the nucleation of vortices. Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, pp. 1101-1120. doi : 10.1016/j.crhy.2006.10.023. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.023/

[1] J. Wilks The Properties of Liquid and Solid Helium, Clarendon Press, Oxford, 1967

[2] W. Vinen Critical velocities in liquid helium II (G. Careri, ed.), Liquid Helium, Academic Press, New York, 1963, p. 336

[3] J. Langer; J. Reppy (C.J. Gorter, ed.), Prog. Low Temp. Phys., vol. 6, North-Holland, Amsterdam, 1970, p. 1 (Chapter 1)

[4] C. Muirhead; W. Vinen; R. Donnelly The nucleation of vorticity by ions in superfluid 4He i. Basic theory, Phil. Trans. Roy. Soc. A, Volume 311 (1984), p. 433

[5] E. Varoquaux; O. Avenel; M. Meisel Phase slippage and vortex nucleation in the critical flow of superfluid 4He through an orifice, Can. J. Phys., Volume 65 (1987), p. 1377

[6] E. Varoquaux; W. Zimmermann Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids (A.F.G. Wyatt; H.J. Lauter, eds.), Plenum Press, New York, 1991, p. 343

[7] O. Avenel; G. Ihas; E. Varoquaux The nucleation of vortices in superfluid 4He: Answers and questions, J. Low Temp. Phys., Volume 93 (1993), p. 1031

[8] E. Varoquaux; O. Avenel; Y. Mukharsky; P. Hakonen The experimental evidence for vortex nucleation in 4He (W.F. Vinen; C.F. Barenghi; R.J. Donnelly, eds.), Quantized Vortex Dynamics and Superfluid Turbulence, Springer-Verlag, Berlin, 2001, p. 36

[9] E. Varoquaux; O. Avenel Vortex nucleation in phase-slippage experiments in ultrapure superfluid 4He below 0.5 K, Phys. Rev. B, Volume 68 (2003), p. 054515

[10] G. Baym Mathematical Methods in Solid State and Superfluid Theory (R.C. Clark; G.H. Derrick, eds.), Oliver and Boyd Ltd, Edinburgh, 1969, p. 134 (Chapter 3)

[11] P. Anderson Considerations on the flow of superfluid helium, Rev. Mod. Phys., Volume 38 (1966), p. 298

[12] S.H. Lamb Hydrodynamics, Cambridge Univ. Press, Cambridge, UK, 1932

[13] E. Sonin Vortex oscillations and hydrodynamics of rotating superfluids, Rev. Mod. Phys., Volume 59 (1987), p. 87

[14] E. Sonin Nucleation and creep of vortices in superfluids and clean superconductors, Physica B, Volume 210 (1995), p. 234

[15] O. Avenel; E. Varoquaux Observation of singly quantized dissipation events obeying the Josephson frequency relation in the critical flow of superfluid 4He through an aperture, Phys. Rev. Lett., Volume 55 (1985), p. 2704

[16] G. Shifflett; G. Hess Intrinsic critical velocities in superfluid 4He flow through 12-μm diam. orifices near Tλ: Experiments on the effect of geometry, J. Low Temp. Phys., Volume 98 (1995), p. 591

[17] W. Zimmermann The flow of superfluid 4He through submicron apertures: phase slip and critical velocities due to quantum vortex motion, Contemp. Phys., Volume 37 (1996), p. 219

[18] R. Packard The role of the Josephson–Anderson equation in superfluid helium, Rev. Mod. Phys., Volume 70 (1998), p. 641

[19] O. Avenel; E. Varoquaux Josephson effect and phase slippage in superfluids, Jpn. J. Appl. Phys., Volume 26 (1987), p. 1798

[20] B.P. Beecken; W. Zimmermann Variation of the critical order-parameter phase difference with temperature from 0.4 to 1.9 K in the flow of superfluid 4He through a tiny orifice, Phys. Rev., Volume 35 (1987), p. 1630

[21] E. Varoquaux; O. Avenel Phase slip phenomena in superfluid helium, Physica B, Volume 197 (1994), p. 306

[22] O. Avenel; M. Bernard; S. Burkhart; E. Varoquaux Autopsy of superflow collapses and multiple phase slips, Physica B, Volume 210 (1995), p. 215

[23] S. Burkhart; M. Bernard; O. Avenel; E. Varoquaux Scenario for a quantum phase slip, Phys. Rev. Lett., Volume 72 (1994), p. 380

[24] C. Josserand; Y. Pomeau Generation of vortices by the Kadomtsev–Petviashvili instability, Europhys. Lett., Volume 30 (1995), p. 43

[25] C. Josserand; Y. Pomeau; S. Rica Cavitation versus vortex nucleation in a superfluid model, Phys. Rev. Lett., Volume 75 (1995), p. 3150

[26] A. Andreev; L. Melnikovsky Thermodynamics of superfluidity, J. Low Temp. Phys., Volume 135 (2004), p. 411

[27] J. Hulin; D. D'Humières; B. Perrin; A. Libchaber Critical velocities for superfluid helium flow through a small hole, Phys. Rev. A, Volume 9 (1974), p. 885

[28] W. Zimmermann The critical velocity behavior of superfluid 4He in a micron-size aperture at two different frequencies of oscillatory flow, J. Low Temp. Phys., Volume 91 (1993), p. 219

[29] P. McClintock; R. Bowley Vortex creation in superfluid helium-4 (A.F.G. Wyatt; H.J. Lauter, eds.), Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids, Plenum Press, New York, 1991, p. 567

[30] P. McClintock; R. Bowley The Landau critical velocity (W. Halperin, ed.), Prog. Low Temp. Physics, vol. XIV, Elsevier, Amsterdam, 1995, p. 1

[31] G.W. Rayfield; F. Reif Quantized vortex rings in superfluid helium, Phys. Rev., Volume 136 (1964), p. A1194

[32] W. Zimmermann; C. Lindensmith; J. Flaten The interpretation of phase-slip and critical-velocity data, J. Low Temp. Phys., Volume 110 (1998), p. 497

[33] E. Varoquaux; G. Ihas; O. Avenel; R. Aarts Vortex nucleation in superfluid 4He probed by 3He impurities, Phys. Rev. Lett., Volume 70 (1993), p. 2114

[34] J. Steinhauer; K. Schwab; Y. Mukharsky; J. Davis; R.E. Packard Vortex nucleation in superfluid 4He, Phys. Rev. Lett., Volume 74 (1995), p. 5056

[35] W. Zimmermann; O. Avenel; E. Varoquaux Critical flow of superfluid helium-4 through a submicron aperture: width of the critical transition, Physica B, Volume 165 166 (1990), p. 749

[36] E. Varoquaux; M. Meisel; O. Avenel Onset of the critical velocity regime in superfluid 4He at low temperature, Phys. Rev. Lett., Volume 57 (1986), p. 2291

[37] G. Ihas; O. Avenel; R. Aarts; R. Salmelin; E. Varoquaux Quantum nucleation of vortices in the flow of superfluid 4He through an orifice, Phys. Rev. Lett., Volume 69 (1992), p. 327

[38] P. Hendry; N. Lawson; P. McClintock; C. Williams; R. Bowley Macroscopic quantum tunneling of vortices in He II, Phys. Rev. Lett., Volume 60 (1988), p. 604

[39] J. Martinis; H. Grabert Thermal enhancement of macroscopic quantum tunneling: Derivation from noise theory, Phys. Rev. B, Volume 38 (1988), p. 2371

[40] A. Caldeira; A. Leggett; A. Caldeira; A. Leggett Quantum tunnelling in a dissipative system, Ann. Phys. (N.Y.), Volume 149 (1983), p. 374 (Erratum)

[41] L. Landau; E. Lifshitz Quantum Mechanics, Pergamon Press, London, 1958 (§50)

[42] S. Coleman Fate of the false vacuum: Semiclassical theory, Phys. Rev. D, Volume 15 (1977), p. 2929

[43] U. Fischer Tunnelling of topological line defects in strongly coupled superfluids, Ann. Phys. (Leipzig), Volume 9 (2000), p. 523

[44] A. Larkin; K. Likharev; Y. Ovchinnikov Secondary quantum macroscopic effects in weak superconductivity, Physica B, Volume 126 (1984), p. 414

[45] T. Frisch; Y. Pomeau; S. Rica Transition to dissipation in a model of superflow, Phys. Rev. Lett., Volume 69 (1992), p. 1644

[46] C. Nore; C. Huepe; M. Brachet Subcritical dissipation in three-dimensional superflows, Phys. Rev. Lett., Volume 84 (2000), p. 2191

[47] N.G. Berloff; P.H. Roberts Vortices in nonlocal condensate models of superfluid helium, Quantized Vortex Dynamics and Superfluid Turbulence, Springer-Verlag, Berlin, 2001, p. 268

[48] S. Rica Vortex Nucleation and Limit Speed for a Flow Passing Nonlinearly Around a Disk in the Nonlinear Schrödinger Equation, Lecture Notes in Physics, vol. 571, Springer-Verlag, Berlin, 2001, p. 258

[49] V. Mel'nikov The Kramers problem: Fifty years of development, Phys. Rep., Volume 209 (1991), p. 1

[50] J.M. Martinis; M.H. Devoret; J. Clarke Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction, Phys. Rev. B, Volume 35 (1987), p. 4682

[51] H. Grabert; P. Olschowski; U. Weiss Quantum decay rates for dissipative systems at finite temperatures, Phys. Rev. B, Volume 36 (1987), p. 1931

[52] D. Waxman; A. Leggett Dissipative quantum tunneling at finite temperatures, Phys. Rev. B, Volume 32 (1985), p. 4450

[53] H. Grabert Escape from a metastable well: The Kramers turnover problem, Phys. Rev. Lett., Volume 61 (1988), p. 1683

[54] I. Rips; E. Pollak Quantum Kramers model: Solution of the turnover problem, Phys. Rev. A, Volume 41 (1989), p. 5366

[55] P. Hänggi; P. Talkner; M. Borkovec Reaction rate theory: Fifty years after Kramers, Rev. Mod. Phys., Volume 62 (1990), p. 251

[56] J. Langer; M. Fisher Intrinsic critical velocity of a superfluid, Phys. Rev. Lett., Volume 19 (1967), p. 560

[57] G. Volovik Quantum-mechanical formation of vortices in a superfluid liquid, Sov. Phys. JETP Lett., Volume 15 (1972), p. 81

[58] D. Awschalom; K.W. Schwarz Observation of a remanent vortex-line density in superfluid helium, Phys. Rev. Lett., Volume 52 (1984), p. 49

[59] P. Adams; M. Cieplak; W.I. Glaberson Spin-up problem in superfluid 4He, Phys. Rev. B, Volume 32 (1985), p. 171

[60] K. Schwarz Three-dimensional vortex dynamics in superfluid 4He: Line–line and line–boundary interactions, Phys. Rev. B, Volume 31 (1985), p. 5782

[61] W. Glaberson; R. Donnelly Growth of pinned quantized vortex lines in helium II, Phys. Rev., Volume 141 (1966), p. 208

[62] K.W. Schwarz, private communication

[63] B. Svistunov Superfluid turbulence in the low-temperature limit, Phys. Rev. B, Volume 52 (1995), p. 3647

[64] M. Tsubota; T. Araki; S.K. Nemirovskii Dynamics of vortex tangle without mutual friction in superfluid 4He, Phys. Rev. B, Volume 62 (2000), p. 11751

[65] K. Schwarz Phase slip and turbulence in superfluid 4He: A vortex mill that works, Phys. Rev. Lett., Volume 64 (1990), p. 1130

[66] A. Amar; Y. Sasaki; R. Lozes; J. Davis; R. Packard Quantized phase slippage in superfluid 4He, Phys. Rev. Lett., Volume 68 (1992), p. 2624

[67] E. Varoquaux; O. Avenel; M. Bernard; S. Burkhart Multiple quantum phase slips in superfluid 4He, J. Low Temp. Phys., Volume 101 (1995), p. 821

[68] G. Hess Vortex generation in modulated superfluid 4He flow through a pinhole, Phys. Rev. B, Volume 15 (1977), p. 5204

[69] P. Hakonen; O. Avenel; E. Varoquaux Evidence for single-vortex pinning and unpinning events in superfluid 4He, Phys. Rev. Lett., Volume 81 (1998), p. 3451

[70] E. Varoquaux; O. Avenel; P. Hakonen; Y. Mukharsky Observation of single-vortex pinning in superfluid 4He, Physica B, Volume 255 (1998), p. 55

[71] K. Schwarz Critical velocity for a self-sustaining vortex tangle in superfluid helium, Phys. Rev. Lett., Volume 50 (1983), p. 364

[72] K.W. Madison; F. Chevy; V. Bretin; J. Dalibard Stationary states of a rotating Bose–Einstein condensate: Routes to vortex nucleation, Phys. Rev. Lett., Volume 86 (2001), p. 4443

[73] V. Eltsov; M. Krusius; G. Volovik Vortex formation and dynamics in superfluid 3He (W. Halperin, ed.), Prog. Low Temp. Physics, vol. XV, Elsevier, 2005, p. 1 (Chapter 1)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Quantum plasticity and dislocation-induced supersolidity

Jean-Philippe Bouchaud; Giulio Biroli

C. R. Phys (2008)


Vortices in dipolar Bose–Einstein condensates

Thomas Bland; Giacomo Lamporesi; Manfred J. Mark; ...

C. R. Phys (2023)


Nucleation of crystals from their liquid phase

Sébastien Balibar; Frédéric Caupin

C. R. Phys (2006)