Skip to main content

24.04.2024 | LCA FOR ENERGY SYSTEMS AND FOOD PRODUCTS

A comprehensive cradle-to-grave life cycle assessment of three representative lithium-ion stationary batteries targeting a 20-year bi-daily charge–discharge service

verfasst von: H. Bewi Komesse, M. Lucas, S. Duval—Dachary, S. Beauchet

Erschienen in: The International Journal of Life Cycle Assessment

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Purpose

Along with the harvesting of renewable energy sources to decrease the environmental footprint of the energy sector, energy storage systems appear as a relevant solution to ensure a reliable and flexible electricity supply network. Lithium-ion (Li-ion) batteries are so far, the most widespread operational electrochemical storage system. The aim of this study is to address the lack of comprehensive cradle-to-grave environmental impact evaluation for stationary Li-ion batteries.

Materials and methods

Three stationary Li-ion batteries are assessed here: a prototype lithium iron phosphate/graphite (LFP/G) battery and two alternatives (with nickel manganese cobalt (NMC) positive electrodes and graphite (G) or lithium titanate oxide (LTO) negative electrodes). Midpoint to endpoint environmental indicators are estimated and compared using the life cycle assessment methodology. With the help of literature data, the modelling includes all auxiliary equipment (container, power electronics, etc.) and considers end-of-life (EoL) processes that are as specific as possible for each component. The evaluation accounts for two full charge equivalent per day for a 20-year period.

Results

The endpoint analysis does not enable to determine which of the NMC/G and LFP/G batteries has the lesser environmental impacts. A more detailed examination of the midpoint indicators is essential for making a choice between the two, as both present pros and cons. However, for both endpoint and midpoint indicators, the NMC/LTO battery is less impactful than the other batteries, particularly for critical categories (human toxicity, freshwater ecotoxicity and eutrophication) as it does not need any pack replacement and contains less copper. Auxiliary equipment does not contribute significantly to most of the cradle-to-grave environmental indicators, except for steel container recycling, which induces human carcinogenic toxicity. In all other categories, the screened EoL processes indicated potential net negative impacts, especially through the recycling of lithium compounds in LFP and LTO electrodes with adapted processes. Recovering the aluminium cell containers and electrode foils from dismantled cells is also significantly beneficial.

Discussions

This work provides a consistent comparison between three different battery storage systems including all auxiliary components and all life cycle stages. Reliability of the findings hinges on the selected inventories and parameters’ assumptions, most of which are derived from the literature. Sensitivity analysis has shown the significance of certain parameters, such as the battery pack’s lifespan, in determining the least impactful battery. Primary data on the battery use phase (lifespan, round-trip efficiency, depth-of-discharge) as well as a more detailed modelling of both auxiliary equipment and EoL processes would provide a more accurate picture of the associated environmental impacts. Finally, to make a choice, other criteria such as economic aspects, pack safety or criticality risks of materials should be considered.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
U.S. DOE’s Global Energy Storage Database identifies more than 450 Li-ion stationary battery projects worldwide in 2020 (U.S. Department Of Energy (DOE) s.d.), to which residential systems shall be added.
 
Literatur
Zurück zum Zitat Bauer C (2010a) Oekobilanz von Lithium-Ionen Batterien - Analyse der Herstellung von Energiespeichern für den Einsatz in Batteriefahrzeugen, Studie im Auftrag von Volkswagen AG Villigen, Switzerland: s.n Bauer C (2010a) Oekobilanz von Lithium-Ionen Batterien - Analyse der Herstellung von Energiespeichern für den Einsatz in Batteriefahrzeugen, Studie im Auftrag von Volkswagen AG Villigen, Switzerland: s.n
Zurück zum Zitat Bauer C (2010b) Ökobilanz von Lithium-Ionen Batterien. Paul Scherrer Institut, Labor für Energiesystem-Analysen (LEA) Bauer C (2010b) Ökobilanz von Lithium-Ionen Batterien. Paul Scherrer Institut, Labor für Energiesystem-Analysen (LEA)
Zurück zum Zitat Bielitz C (2016) Environmental and economic life-cycle assessment of battery technologies for electricity storage, s.l.: s.n Bielitz C (2016) Environmental and economic life-cycle assessment of battery technologies for electricity storage, s.l.: s.n
Zurück zum Zitat Boyden A, Soo VK, Doolan M (2016) The environmental impacts of recycling portable lithium-ion batteries. Procedia CIRP Boyden A, Soo VK, Doolan M (2016) The environmental impacts of recycling portable lithium-ion batteries. Procedia CIRP
Zurück zum Zitat CEA-Liten P (2023) NMC vs LFP: safety and performance in operation. Dans: s.l.:s.n CEA-Liten P (2023) NMC vs LFP: safety and performance in operation. Dans: s.l.:s.n
Zurück zum Zitat Chen J, Li Q, Song J, Song D, Zhang L, Shi X (2016) Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries. Green Chem 18(8):2500–2506CrossRef Chen J, Li Q, Song J, Song D, Zhang L, Shi X (2016) Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries. Green Chem 18(8):2500–2506CrossRef
Zurück zum Zitat Chen Q, Hou Y, Lai X, Shen K, Gu H, Wang Y et al (2023) Evaluating environmental impacts of different hydrometallurgical recycling technologies of the retired nickel-manganese-cobalt batteries from electric vehicles in China. Sep Purif Technol 311:123277CrossRef Chen Q, Hou Y, Lai X, Shen K, Gu H, Wang Y et al (2023) Evaluating environmental impacts of different hydrometallurgical recycling technologies of the retired nickel-manganese-cobalt batteries from electric vehicles in China. Sep Purif Technol 311:123277CrossRef
Zurück zum Zitat Cicconi P, Landi D, Morbidoni A, Germani M (2012) Feasibility analysis of second life applications for Li-Ion cells used in electric powertrain using environmental indicators. s.l., s.n Cicconi P, Landi D, Morbidoni A, Germani M (2012) Feasibility analysis of second life applications for Li-Ion cells used in electric powertrain using environmental indicators. s.l., s.n
Zurück zum Zitat Ciez RE, Whitacre J (2019) Examining different recycling processes for lithium-ion batteries. Nat Sustain 2:148–156CrossRef Ciez RE, Whitacre J (2019) Examining different recycling processes for lithium-ion batteries. Nat Sustain 2:148–156CrossRef
Zurück zum Zitat Cusenza MA, Guarino F, Longo S, Ferraro M, Cellura M (2019) Energy and environmental benefits of circular economy strategies: the case study of reusing used batteries from electric vehicles. J Energy Storage 25:100845CrossRef Cusenza MA, Guarino F, Longo S, Ferraro M, Cellura M (2019) Energy and environmental benefits of circular economy strategies: the case study of reusing used batteries from electric vehicles. J Energy Storage 25:100845CrossRef
Zurück zum Zitat Dunn JB, Gaines L, Sullivan J, Wang MQ (2012) Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ Sci Technol 46(22):12704–12710CrossRef Dunn JB, Gaines L, Sullivan J, Wang MQ (2012) Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries. Environ Sci Technol 46(22):12704–12710CrossRef
Zurück zum Zitat Dunn J, Ritter K, Velázquez JM, Kendall A (2023) Should high-cobalt EV batteries be repurposed? Using LCA to assess the impact of technological innovation on the waste hierarchy. J Ind Ecol 27(5):1277–1290CrossRef Dunn J, Ritter K, Velázquez JM, Kendall A (2023) Should high-cobalt EV batteries be repurposed? Using LCA to assess the impact of technological innovation on the waste hierarchy. J Ind Ecol 27(5):1277–1290CrossRef
Zurück zum Zitat Ellingsen LAW, Majeau-Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life cycle assessment of a lithium-ion battery vehicle pack: LCA of a Li-Ion battery vehicle pack. J Ind Ecol 18(1):113–124CrossRef Ellingsen LAW, Majeau-Bettez G, Singh B, Srivastava AK, Valøen LO, Strømman AH (2014) Life cycle assessment of a lithium-ion battery vehicle pack: LCA of a Li-Ion battery vehicle pack. J Ind Ecol 18(1):113–124CrossRef
Zurück zum Zitat European Commission (2018) Product Environmental footprint category rules for high specific energy rechargeable batteries for mobile applications, s.l.: s.n European Commission (2018) Product Environmental footprint category rules for high specific energy rechargeable batteries for mobile applications, s.l.: s.n
Zurück zum Zitat European Parliament & Council (2023) Regulation of the European parliament and of the council concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC, s.l.: s.n European Parliament & Council (2023) Regulation of the European parliament and of the council concerning batteries and waste batteries, amending Directive 2008/98/EC and Regulation (EU) 2019/1020 and repealing Directive 2006/66/EC, s.l.: s.n
Zurück zum Zitat Faria R et al (2014) Primary and secondary use of electric mobility batteries from a life cycle perspective. J Power Sources 262:169–177CrossRef Faria R et al (2014) Primary and secondary use of electric mobility batteries from a life cycle perspective. J Power Sources 262:169–177CrossRef
Zurück zum Zitat Genikomsakis KN et al (2013) A life cycle assessment of a Li-ion urban electric vehicle battery. s.l., s.n Genikomsakis KN et al (2013) A life cycle assessment of a Li-ion urban electric vehicle battery. s.l., s.n
Zurück zum Zitat Glensor K, Muñoz BMR (2019) Life-cycle assessment of brazilian transport biofuel and electrification pathways. Sustainability 11:6332CrossRef Glensor K, Muñoz BMR (2019) Life-cycle assessment of brazilian transport biofuel and electrification pathways. Sustainability 11:6332CrossRef
Zurück zum Zitat Gratz E, Sa Q, Apelian D, Wang Y (2014) A closed loop process for recycling spent lithium ion batteries. J Power Sources 262:255–262CrossRef Gratz E, Sa Q, Apelian D, Wang Y (2014) A closed loop process for recycling spent lithium ion batteries. J Power Sources 262:255–262CrossRef
Zurück zum Zitat Ha Y et al (2021) Impact of electrode thickness and temperature on the rate capability of Li4Ti5O12/LiMn2O4 cells. ECS 168:110536 Ha Y et al (2021) Impact of electrode thickness and temperature on the rate capability of Li4Ti5O12/LiMn2O4 cells. ECS 168:110536
Zurück zum Zitat Hache E et al (2019) Critical raw materials and transportation sector electrification: a detailed bottom-up analysis in world transport. Appl Energy 40:6–25CrossRef Hache E et al (2019) Critical raw materials and transportation sector electrification: a detailed bottom-up analysis in world transport. Appl Energy 40:6–25CrossRef
Zurück zum Zitat Harlow JE, Ma X, Li J, Logan E, Liu Y, Zhang N et al (2019) A wide range of testing results on an excellent lithium-ion cell. J Electrochem Soc 166(13):A3031–A3044CrossRef Harlow JE, Ma X, Li J, Logan E, Liu Y, Zhang N et al (2019) A wide range of testing results on an excellent lithium-ion cell. J Electrochem Soc 166(13):A3031–A3044CrossRef
Zurück zum Zitat Heelan J, Gratz E, Zheng Z, Wang Q, Chen M, Apelian D, Wang Y (2016) Current and prospective li-ion battery recycling and recovery processes. JOM 68(10):2632–2638CrossRef Heelan J, Gratz E, Zheng Z, Wang Q, Chen M, Apelian D, Wang Y (2016) Current and prospective li-ion battery recycling and recovery processes. JOM 68(10):2632–2638CrossRef
Zurück zum Zitat Hesse H, Schimpe M, Kucevic D, Jossen A (2017) Lithium-ion battery storage for the grid—a review of stationary battery storage system design tailored for applications in modern power grids. Energies 10(12):2107CrossRef Hesse H, Schimpe M, Kucevic D, Jossen A (2017) Lithium-ion battery storage for the grid—a review of stationary battery storage system design tailored for applications in modern power grids. Energies 10(12):2107CrossRef
Zurück zum Zitat Hiremath M, Derendorf K, Vogt T (2015) Comparative LCA of battery storage systems for stationary applications. Environ Sci Technol 49(8):4825–4833CrossRef Hiremath M, Derendorf K, Vogt T (2015) Comparative LCA of battery storage systems for stationary applications. Environ Sci Technol 49(8):4825–4833CrossRef
Zurück zum Zitat Huijbregts M et al (2016) A harmonized life cycle impact assessment method at midpoint and endpoint level. Int J LCA 22(2):138–147CrossRef Huijbregts M et al (2016) A harmonized life cycle impact assessment method at midpoint and endpoint level. Int J LCA 22(2):138–147CrossRef
Zurück zum Zitat IEA (2019) s.d. World energy outlook. All rights reserved. s.l.:s.n IEA (2019) s.d. World energy outlook. All rights reserved. s.l.:s.n
Zurück zum Zitat Jaiswal A (2017) Lithium-ion battery based renewable energy solution for off-grid electricity: a techno-economic analysis. Renew Sust Energ Rev 72:922–934CrossRef Jaiswal A (2017) Lithium-ion battery based renewable energy solution for off-grid electricity: a techno-economic analysis. Renew Sust Energ Rev 72:922–934CrossRef
Zurück zum Zitat Jasper FB et al (2022) Life cycle assessment (LCA) of a battery home storage system based on primary data. J Clean Prod 366:132899CrossRef Jasper FB et al (2022) Life cycle assessment (LCA) of a battery home storage system based on primary data. J Clean Prod 366:132899CrossRef
Zurück zum Zitat Kang DHP, Chen M, Ogunseitan OA (2013) Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ Sci Technol 47:5495–5503CrossRef Kang DHP, Chen M, Ogunseitan OA (2013) Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ Sci Technol 47:5495–5503CrossRef
Zurück zum Zitat Laucournet R, Barthelemy S, Diaferia N (2016) Method for recycling lithium batteries and/or electrodes of such batteries. France, Brevet n° US 9,312,581 B2 Laucournet R, Barthelemy S, Diaferia N (2016) Method for recycling lithium batteries and/or electrodes of such batteries. France, Brevet n° US 9,312,581 B2
Zurück zum Zitat Lavergne R, Pavel I, Faucheux I Mars (2019) Stockage stationnaire d'électricité. Synthèse et recommandations du thème de l’année 2018 de la Section ICM du CGE, Paris: s.n Lavergne R, Pavel I, Faucheux I Mars (2019) Stockage stationnaire d'électricité. Synthèse et recommandations du thème de l’année 2018 de la Section ICM du CGE, Paris: s.n
Zurück zum Zitat Li H et al (2017) Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustain Chem Eng 5:8017–8024CrossRef Li H et al (2017) Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system. ACS Sustain Chem Eng 5:8017–8024CrossRef
Zurück zum Zitat Lombardi L, Tribioli L, Cozzolino R, Bella G (2017) Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA. Int J LCA 22:1989–2006CrossRef Lombardi L, Tribioli L, Cozzolino R, Bella G (2017) Comparative environmental assessment of conventional, electric, hybrid, and fuel cell powertrains based on LCA. Int J LCA 22:1989–2006CrossRef
Zurück zum Zitat Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45:4548–4554CrossRef Majeau-Bettez G, Hawkins TR, Strømman AH (2011) Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles. Environ Sci Technol 45:4548–4554CrossRef
Zurück zum Zitat Melin HE (2019) State-of-the-art in reuse and recycling of lithium-ion batteries – a research review. Circular Energy Storage Melin HE (2019) State-of-the-art in reuse and recycling of lithium-ion batteries – a research review. Circular Energy Storage
Zurück zum Zitat Mohr M, Peters JF, Baumann M, Weil M (2020) Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. J Ind Ecol 24(6):1310–1322CrossRef Mohr M, Peters JF, Baumann M, Weil M (2020) Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. J Ind Ecol 24(6):1310–1322CrossRef
Zurück zum Zitat Munzke N, Schwarz B, Büchle F, Hiller M (2021) Evaluation of the efficiency and resulting electrical and economic losses of photovoltaic home storage systems. J Energy Storage 33:101724CrossRef Munzke N, Schwarz B, Büchle F, Hiller M (2021) Evaluation of the efficiency and resulting electrical and economic losses of photovoltaic home storage systems. J Energy Storage 33:101724CrossRef
Zurück zum Zitat Nakajima K et al (2008) Substance flow analysis of zinc associated with iron and steel cycle in Japan, and Environmental assessment of eaf dust recycling process. ISIJ Int 48(10):1478–1483CrossRef Nakajima K et al (2008) Substance flow analysis of zinc associated with iron and steel cycle in Japan, and Environmental assessment of eaf dust recycling process. ISIJ Int 48(10):1478–1483CrossRef
Zurück zum Zitat Notter D et al (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicle. Environ Sci Technol 44:6550–6556CrossRef Notter D et al (2010) Contribution of Li-ion batteries to the environmental impact of electric vehicle. Environ Sci Technol 44:6550–6556CrossRef
Zurück zum Zitat Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Clim Chang 5:329–332CrossRef Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Clim Chang 5:329–332CrossRef
Zurück zum Zitat Oliveira L et al (2015) Environmental performance of electricity storage systems for grid applications, a life cycle approach. Energy Convers Manag 101:326–335CrossRef Oliveira L et al (2015) Environmental performance of electricity storage systems for grid applications, a life cycle approach. Energy Convers Manag 101:326–335CrossRef
Zurück zum Zitat Olivetti EA, Ceder G, Gaustad GG, Fu X (2017) Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1(2):229–243CrossRef Olivetti EA, Ceder G, Gaustad GG, Fu X (2017) Lithium-ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule 1(2):229–243CrossRef
Zurück zum Zitat Pellow MA, Ambrose H, Mulvaney D, Betita R, Shaw S (2020) Research gaps in environmental life cycle assessments of lithium ion batteries for grid-scale stationary energy storage systems: end-of-life options and other issues. Sustain Mater Technol 23:e00120 Pellow MA, Ambrose H, Mulvaney D, Betita R, Shaw S (2020) Research gaps in environmental life cycle assessments of lithium ion batteries for grid-scale stationary energy storage systems: end-of-life options and other issues. Sustain Mater Technol 23:e00120
Zurück zum Zitat Peters JF, Weil M (2017) Aqueous hybrid ion batteries – an environmentally friendly alternative for stationary energy storage? J Power Sources 364:258–265CrossRef Peters JF, Weil M (2017) Aqueous hybrid ion batteries – an environmentally friendly alternative for stationary energy storage? J Power Sources 364:258–265CrossRef
Zurück zum Zitat Peters JF, Weil M (2018) Providing a common base for life cycle assessments of Li-ion batteries. J Clean Prod 171:704–713CrossRef Peters JF, Weil M (2018) Providing a common base for life cycle assessments of Li-ion batteries. J Clean Prod 171:704–713CrossRef
Zurück zum Zitat Peters JF, Baumann M, Binderd JR, Weilce M (2021) On the environmental competitiveness of sodium-ion batteries under a full life cycle perspective – a cell-chemistry specific modelling approach. Sustain Energy Fuels 5(24):6414–6429CrossRef Peters JF, Baumann M, Binderd JR, Weilce M (2021) On the environmental competitiveness of sodium-ion batteries under a full life cycle perspective – a cell-chemistry specific modelling approach. Sustain Energy Fuels 5(24):6414–6429CrossRef
Zurück zum Zitat Preger Y, Barkholtz HM, Fresquez A, Campbell DL, Juba BW, Romàn-Kustas J et al (2020) Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J Electrochem Soc 167(12):120532CrossRef Preger Y, Barkholtz HM, Fresquez A, Campbell DL, Juba BW, Romàn-Kustas J et al (2020) Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J Electrochem Soc 167(12):120532CrossRef
Zurück zum Zitat Ryan NA, Lin Y, Mitchell-Ward N, Mathieu JL, Johnson JX (2018) Use-phase drives lithium-ion battery life cycle environmental impacts when used for frequency regulation. Environ Sci Technol 52(17):10163–10174CrossRef Ryan NA, Lin Y, Mitchell-Ward N, Mathieu JL, Johnson JX (2018) Use-phase drives lithium-ion battery life cycle environmental impacts when used for frequency regulation. Environ Sci Technol 52(17):10163–10174CrossRef
Zurück zum Zitat Schauf M, Schwenen S (2023) System price dynamics for battery storage. Energy Policy 183:113836CrossRef Schauf M, Schwenen S (2023) System price dynamics for battery storage. Energy Policy 183:113836CrossRef
Zurück zum Zitat Schimpe M, Naumann M, Truong N, Hesse HC, Santhanagopalan S, Saxon A, Jossen A (2018) Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis. Appl Energy 210:211–229CrossRef Schimpe M, Naumann M, Truong N, Hesse HC, Santhanagopalan S, Saxon A, Jossen A (2018) Energy efficiency evaluation of a stationary lithium-ion battery container storage system via electro-thermal modeling and detailed component analysis. Appl Energy 210:211–229CrossRef
Zurück zum Zitat Song X, Hu T, Liang C, Long HL, Zhou L, Song W et al (2017) Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Adv 7(8):4783–4790CrossRef Song X, Hu T, Liang C, Long HL, Zhou L, Song W et al (2017) Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method. RSC Adv 7(8):4783–4790CrossRef
Zurück zum Zitat Stougie L et al (2019) Multi-dimensional life cycle assessment of decentralised energy storage systems. Energy 182:535–543CrossRef Stougie L et al (2019) Multi-dimensional life cycle assessment of decentralised energy storage systems. Energy 182:535–543CrossRef
Zurück zum Zitat Tsiropoulos I, Tarvydas D, Lebedeva N (2018a) Li-ion batteries for mobility and stationary storage applications – scenarios for costs and market growth, EUR 29440 EN. Publications Office of the European Union, Luxembourg Tsiropoulos I, Tarvydas D, Lebedeva N (2018a) Li-ion batteries for mobility and stationary storage applications – scenarios for costs and market growth, EUR 29440 EN. Publications Office of the European Union, Luxembourg
Zurück zum Zitat Tsiropoulos I, Tarvydas D, Lebedeva N (2018b) Li-ion batteries for mobility and stationary storage applications – scenarios for costs and market growth, EUR 29440 EN, Publications Office of the European Union, Luxembourg s.l.: s.n Tsiropoulos I, Tarvydas D, Lebedeva N (2018b) Li-ion batteries for mobility and stationary storage applications – scenarios for costs and market growth, EUR 29440 EN, Publications Office of the European Union, Luxembourg s.l.: s.n
Zurück zum Zitat van Westing E, Savran V, Hofman J (2013) Recycling of metals from coatings. A desk study, Delft, The Netherlands: s.n. van Westing E, Savran V, Hofman J (2013) Recycling of metals from coatings. A desk study, Delft, The Netherlands: s.n.
Zurück zum Zitat Vandepaer L, Cloutier J, Bauer C, Amor B (2019) Integrating batteries in the future swiss electricity supply system: a consequential environmental assessment. J Ind Ecol 23(3):709–725CrossRef Vandepaer L, Cloutier J, Bauer C, Amor B (2019) Integrating batteries in the future swiss electricity supply system: a consequential environmental assessment. J Ind Ecol 23(3):709–725CrossRef
Zurück zum Zitat Wang W, Choi D, Yang Z (2013) Li-ion battery with LiFePO4 cathode and Li4Ti5O12 anode for stationary energy storage. Metall Mater Trans A 44(S1):21–22CrossRef Wang W, Choi D, Yang Z (2013) Li-ion battery with LiFePO4 cathode and Li4Ti5O12 anode for stationary energy storage. Metall Mater Trans A 44(S1):21–22CrossRef
Zurück zum Zitat Weber S, Peters JF, Baumann M, Weil M (2018) Life cycle assessment of a vanadium redox flow battery. Environ Sci Technol 52:10864–10873CrossRef Weber S, Peters JF, Baumann M, Weil M (2018) Life cycle assessment of a vanadium redox flow battery. Environ Sci Technol 52:10864–10873CrossRef
Zurück zum Zitat Xiong S, Ji J, Maa X (2020) Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Manage 102:579–586CrossRef Xiong S, Ji J, Maa X (2020) Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles. Waste Manage 102:579–586CrossRef
Zurück zum Zitat Yaws CL (1996) Handbook of thermodynamic diagrams. Gulf Pub. Co., Huston Yaws CL (1996) Handbook of thermodynamic diagrams. Gulf Pub. Co., Huston
Zurück zum Zitat Yin R, Hu S, Yang Y (2019) Life cycle inventories of the commonly used materials for lithium-ion batteries in China. J Clean Prod 227(6):960–971CrossRef Yin R, Hu S, Yang Y (2019) Life cycle inventories of the commonly used materials for lithium-ion batteries in China. J Clean Prod 227(6):960–971CrossRef
Zurück zum Zitat Yudhistira R, Khatiwada D, Sanchez F (2022) A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. J Clean Prod 358:131999CrossRef Yudhistira R, Khatiwada D, Sanchez F (2022) A comparative life cycle assessment of lithium-ion and lead-acid batteries for grid energy storage. J Clean Prod 358:131999CrossRef
Zurück zum Zitat Zackrisson M, Avellán L, Orlenius J (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles – critical issues. J Clean Prod 18(15):1519–1529CrossRef Zackrisson M, Avellán L, Orlenius J (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles – critical issues. J Clean Prod 18(15):1519–1529CrossRef
Zurück zum Zitat Zeng X, Li J, Singh N (2014) Recycling of spent lithium-ion battery: a critical review. Crit Rev Environ Sci Technol 44(10):1129–1165CrossRef Zeng X, Li J, Singh N (2014) Recycling of spent lithium-ion battery: a critical review. Crit Rev Environ Sci Technol 44(10):1129–1165CrossRef
Zurück zum Zitat Zubi G, Dufo-Lópeza R, Carvalhob M, Pasaogluc G (2018) The lithium-ion battery: state of the art and future perspective. Renew Sust Energ Rev 89:292–308CrossRef Zubi G, Dufo-Lópeza R, Carvalhob M, Pasaogluc G (2018) The lithium-ion battery: state of the art and future perspective. Renew Sust Energ Rev 89:292–308CrossRef
Metadaten
Titel
A comprehensive cradle-to-grave life cycle assessment of three representative lithium-ion stationary batteries targeting a 20-year bi-daily charge–discharge service
verfasst von
H. Bewi Komesse
M. Lucas
S. Duval—Dachary
S. Beauchet
Publikationsdatum
24.04.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-024-02303-z