Skip to main content

2024 | OriginalPaper | Buchkapitel

7. A Mathematical Model for SC-Assisted Stack Ventilation in Multi-storey Buildings

verfasst von : Long Shi, Haihua Zhang

Erschienen in: Solar Chimney Applications in Buildings

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Buoyancy-driven ventilation has been widely studied as an essential role in natural ventilation. By leveraging the potential for solar radiation, the passive solar design strategy could achieve multiple functions to reduce energy consumption (Simões et al in Energy, 121197, 2021; Noorollahi in Energy 218, 2021). Following the airflow pattern, the passive ventilation system can achieve natural ventilation, space heating/cooling, and preheating air (Zhang in Renew Sustain Energy Rev 141, 2021; Monghasemi and Vadiee in Renew Sustain Energy Rev 81:2714–2730, 2018; Zhang in Appl Energy 165:707–734, 2016; Pourshab in Energy 200, 2020). Air density gradients mainly produce pressure differences at different locations (Bachrun et al in EduARCHsia & Senvar 2019 International Conference (EduARCHsia 2019). Atlantis Press, 2020). Buoyant ventilation systems featuring air channels, such as solar chimneys, Trombe walls, and double skin façades, share similar physical processes. Significantly, passive solar designs are preferable in tropical climates and medium/low-rise buildings (Miyazaki et al. in Renewable Energy 31:987–1010, 2006; Hamdy and Fikry in Renewable Energy 14:381–386, 1998;). Besides, buoyancy-driven ventilation systems are adequate for low floors, while improving ventilation on high floors requires adjusting the vent area or using mixed modes of ventilation (Yang and Li in Energy Build 92:296–305, 2015; Acred and Hunt in Build Environ 71:121–130, 2014).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Simões N, Manaia M, Simões I (2021) Energy performance of solar and Trombe walls in mediterranean climates. Energy, 121197 Simões N, Manaia M, Simões I (2021) Energy performance of solar and Trombe walls in mediterranean climates. Energy, 121197
2.
Zurück zum Zitat Noorollahi Y et al (2021) Solar energy for sustainable heating and cooling energy system planning in arid climates. Energy 218:119421CrossRef Noorollahi Y et al (2021) Solar energy for sustainable heating and cooling energy system planning in arid climates. Energy 218:119421CrossRef
3.
Zurück zum Zitat Zhang H et al (2021) A critical review of combined natural ventilation techniques in sustainable buildings. Renew Sustain Energy Rev 141:110795CrossRef Zhang H et al (2021) A critical review of combined natural ventilation techniques in sustainable buildings. Renew Sustain Energy Rev 141:110795CrossRef
4.
Zurück zum Zitat Monghasemi N, Vadiee A (2018) A review of solar chimney integrated systems for space heating and cooling application. Renew Sustain Energy Rev 81:2714–2730CrossRef Monghasemi N, Vadiee A (2018) A review of solar chimney integrated systems for space heating and cooling application. Renew Sustain Energy Rev 81:2714–2730CrossRef
5.
Zurück zum Zitat Zhang TT et al (2016) The application of air layers in building envelopes: a review. Appl Energy 165:707–734CrossRef Zhang TT et al (2016) The application of air layers in building envelopes: a review. Appl Energy 165:707–734CrossRef
6.
Zurück zum Zitat Pourshab N et al (2020) Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings. Energy 200:117486CrossRef Pourshab N et al (2020) Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings. Energy 200:117486CrossRef
7.
Zurück zum Zitat Bachrun AS, Ming TZ, Kurniasih S (2020) Building’s solar chimney: ambient obstacle and crosswind in a tropical country. In: EduARCHsia & Senvar 2019 international conference (EduARCHsia 2019). Atlantis Press Bachrun AS, Ming TZ, Kurniasih S (2020) Building’s solar chimney: ambient obstacle and crosswind in a tropical country. In: EduARCHsia & Senvar 2019 international conference (EduARCHsia 2019). Atlantis Press
8.
Zurück zum Zitat Miyazaki T, Akisawa A, Kashiwagi TJRE (2006) The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate. Renewable Energy 31(7):987–1010CrossRef Miyazaki T, Akisawa A, Kashiwagi TJRE (2006) The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate. Renewable Energy 31(7):987–1010CrossRef
9.
Zurück zum Zitat Hamdy I, Fikry M (1998) Passive solar ventilation. Renewable Energy 14(1–4):381–386CrossRef Hamdy I, Fikry M (1998) Passive solar ventilation. Renewable Energy 14(1–4):381–386CrossRef
10.
Zurück zum Zitat Yang D, Li P (2015) Natural ventilation of lower-level floors assisted by the mechanical ventilation of upper-level floors via a stack. Energy Build 92:296–305CrossRef Yang D, Li P (2015) Natural ventilation of lower-level floors assisted by the mechanical ventilation of upper-level floors via a stack. Energy Build 92:296–305CrossRef
11.
Zurück zum Zitat Acred A, Hunt GR (2014) A simplified mathematical approach for modelling stack ventilation in multi-compartment buildings. Build Environ 71:121–130CrossRef Acred A, Hunt GR (2014) A simplified mathematical approach for modelling stack ventilation in multi-compartment buildings. Build Environ 71:121–130CrossRef
12.
Zurück zum Zitat Cuce E et al (2019) Sustainable ventilation strategies in buildings: CFD research. Sustain Energy Technol Assess 36:100540 Cuce E et al (2019) Sustainable ventilation strategies in buildings: CFD research. Sustain Energy Technol Assess 36:100540
13.
Zurück zum Zitat Khanal R, Lei C (2011) Solar chimney—a passive strategy for natural ventilation. Energy Build 43(8):1811–1819CrossRef Khanal R, Lei C (2011) Solar chimney—a passive strategy for natural ventilation. Energy Build 43(8):1811–1819CrossRef
14.
Zurück zum Zitat Khanal R, Lei CW (2015) A numerical investigation of buoyancy induced turbulent air flow in an inclined passive wall solar chimney for natural ventilation. Energy Build 93:217–226CrossRef Khanal R, Lei CW (2015) A numerical investigation of buoyancy induced turbulent air flow in an inclined passive wall solar chimney for natural ventilation. Energy Build 93:217–226CrossRef
15.
Zurück zum Zitat Khanal R, Lei CW (2014) An experimental investigation of an inclined passive wall solar chimney for natural ventilation. Sol Energy 107:461–474CrossRef Khanal R, Lei CW (2014) An experimental investigation of an inclined passive wall solar chimney for natural ventilation. Sol Energy 107:461–474CrossRef
16.
Zurück zum Zitat Khanal R, Lei CW (2014) A scaling investigation of the laminar convective flow in a solar chimney for natural ventilation. Int J Heat Fluid Flow 45:98–108CrossRef Khanal R, Lei CW (2014) A scaling investigation of the laminar convective flow in a solar chimney for natural ventilation. Int J Heat Fluid Flow 45:98–108CrossRef
17.
Zurück zum Zitat Ren XH et al (2019) Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: reversal and cooperative flow dynamics. Renewable Energy 138:354–367CrossRef Ren XH et al (2019) Thermal driven natural convective flows inside the solar chimney flush-mounted with discrete heating sources: reversal and cooperative flow dynamics. Renewable Energy 138:354–367CrossRef
18.
Zurück zum Zitat Shi L (2018) Theoretical models for wall solar chimney under cooling and heating modes considering room configuration. Energy 165:925–938CrossRef Shi L (2018) Theoretical models for wall solar chimney under cooling and heating modes considering room configuration. Energy 165:925–938CrossRef
19.
Zurück zum Zitat Zamora B (2021) Determining correlations for solar chimneys in buildings with wind interference: a numerical approach. Sustain Energy Technol Assess 48:101662 Zamora B (2021) Determining correlations for solar chimneys in buildings with wind interference: a numerical approach. Sustain Energy Technol Assess 48:101662
20.
Zurück zum Zitat Shi L (2019) Impacts of wind on solar chimney performance in a building. Energy 185:55–67CrossRef Shi L (2019) Impacts of wind on solar chimney performance in a building. Energy 185:55–67CrossRef
21.
Zurück zum Zitat Jiménez-Xamán C et al (2020) Assessing the thermal performance of a rooftop solar chimney attached to a single room. J Build Eng 31:101380CrossRef Jiménez-Xamán C et al (2020) Assessing the thermal performance of a rooftop solar chimney attached to a single room. J Build Eng 31:101380CrossRef
22.
Zurück zum Zitat Villar-Ramos M et al (2020) Parametric analysis of the thermal behavior of a single-channel solar chimney. Sol Energy 209:602–617CrossRef Villar-Ramos M et al (2020) Parametric analysis of the thermal behavior of a single-channel solar chimney. Sol Energy 209:602–617CrossRef
23.
Zurück zum Zitat Punyasompun S et al (2009) Investigation on the application of solar chimney for multi-storey buildings. Renewable Energy 34(12):2545–2561CrossRef Punyasompun S et al (2009) Investigation on the application of solar chimney for multi-storey buildings. Renewable Energy 34(12):2545–2561CrossRef
24.
Zurück zum Zitat Baxevanou C, Fidaros D (2017) Numerical study of solar chimney operation in a two story building. Sustain Synergies Build Urban Scale 38:68–76 Baxevanou C, Fidaros D (2017) Numerical study of solar chimney operation in a two story building. Sustain Synergies Build Urban Scale 38:68–76
25.
Zurück zum Zitat Gontikaki M et al (2020) Optimization of a solar chimney design to enhance natural ventilation in a multi-storey office building Gontikaki M et al (2020) Optimization of a solar chimney design to enhance natural ventilation in a multi-storey office building
26.
Zurück zum Zitat Asadi S et al (2016) The effect of solar chimney layout on ventilation rate in buildings. Energy Build 123:71–78CrossRef Asadi S et al (2016) The effect of solar chimney layout on ventilation rate in buildings. Energy Build 123:71–78CrossRef
27.
Zurück zum Zitat Yang D, Li P (2015) Dimensionless design approach, applicability and energy performance of stack-based hybrid ventilation for multi-story buildings. Energy 93:128–140CrossRef Yang D, Li P (2015) Dimensionless design approach, applicability and energy performance of stack-based hybrid ventilation for multi-story buildings. Energy 93:128–140CrossRef
28.
Zurück zum Zitat Chen JL et al (2017) Uncertainty analysis of thermal comfort in a prototypical naturally ventilated office building and its implications compared to deterministic simulation. Energy Build 146:283–294CrossRef Chen JL et al (2017) Uncertainty analysis of thermal comfort in a prototypical naturally ventilated office building and its implications compared to deterministic simulation. Energy Build 146:283–294CrossRef
29.
Zurück zum Zitat Afonso C, Oliveira A (2000) Solar chimneys: simulation and experiment. Energy Build 32(1):71–79CrossRef Afonso C, Oliveira A (2000) Solar chimneys: simulation and experiment. Energy Build 32(1):71–79CrossRef
30.
Zurück zum Zitat Yang LN, Xu PC, Li YG (2006) Nonlinear dynamic analysis of natural ventilation in a two-zone building: Part A—theoretical analysis. Hvac&R Res 12(2):231–255CrossRef Yang LN, Xu PC, Li YG (2006) Nonlinear dynamic analysis of natural ventilation in a two-zone building: Part A—theoretical analysis. Hvac&R Res 12(2):231–255CrossRef
31.
Zurück zum Zitat Wang Y, Wei C (2020) Nonlinear dynamic analysis of solution multiplicity of buoyancy ventilation in two vertically connected open cavities with unequal heights. Complexity Wang Y, Wei C (2020) Nonlinear dynamic analysis of solution multiplicity of buoyancy ventilation in two vertically connected open cavities with unequal heights. Complexity
32.
Zurück zum Zitat Linden PF (1999) The fluid mechanics of natural ventilation. Annu Rev Fluid Mech 31:201–238CrossRef Linden PF (1999) The fluid mechanics of natural ventilation. Annu Rev Fluid Mech 31:201–238CrossRef
33.
Zurück zum Zitat Shi L et al (2018) Determining the influencing factors on the performance of solar chimney in buildings. Renew Sustain Energy Rev 88:223–238CrossRef Shi L et al (2018) Determining the influencing factors on the performance of solar chimney in buildings. Renew Sustain Energy Rev 88:223–238CrossRef
34.
Zurück zum Zitat Jiang Y, Chen QY (2001) Study of natural ventilation in buildings by large eddy simulation. J Wind Eng Ind Aerodyn 89(13):1155–1178CrossRef Jiang Y, Chen QY (2001) Study of natural ventilation in buildings by large eddy simulation. J Wind Eng Ind Aerodyn 89(13):1155–1178CrossRef
35.
Zurück zum Zitat Shi L, Zhang G (2016) An empirical model to predict the performance of typical solar chimneys considering both room and cavity configurations. Build Environ 103:250–261CrossRef Shi L, Zhang G (2016) An empirical model to predict the performance of typical solar chimneys considering both room and cavity configurations. Build Environ 103:250–261CrossRef
36.
Zurück zum Zitat Lai CM et al (2013) Determinations of the fire smoke layer height in a naturally ventilated room. Fire Saf J 58:1–14CrossRef Lai CM et al (2013) Determinations of the fire smoke layer height in a naturally ventilated room. Fire Saf J 58:1–14CrossRef
37.
Zurück zum Zitat Zhang H et al (2021) A wall solar chimney to ventilate multi-zone buildings. Sustain Energy Technol Assess 47:101381 Zhang H et al (2021) A wall solar chimney to ventilate multi-zone buildings. Sustain Energy Technol Assess 47:101381
38.
Zurück zum Zitat McGrattan K et al (2013) Fire dynamics simulator user’s guide. NIST Special Publication 1019(6) McGrattan K et al (2013) Fire dynamics simulator user’s guide. NIST Special Publication 1019(6)
39.
Zurück zum Zitat Jiang Y, Allocca C, Chen Q (2004) Validation of CFD simulations for natural ventilation. Int J Vent 2(4):359–369 Jiang Y, Allocca C, Chen Q (2004) Validation of CFD simulations for natural ventilation. Int J Vent 2(4):359–369
40.
Zurück zum Zitat McGrattan K et al (2013) Fire dynamics simulator technical reference guide volume 1: mathematical model. NIST Special Publication 1018(1):175 McGrattan K et al (2013) Fire dynamics simulator technical reference guide volume 1: mathematical model. NIST Special Publication 1018(1):175
41.
Zurück zum Zitat Obyn S, van Moeseke G (2015) Variability and impact of internal surfaces convective heat transfer coefficients in the thermal evaluation of office buildings. Appl Therm Eng 87:258–272CrossRef Obyn S, van Moeseke G (2015) Variability and impact of internal surfaces convective heat transfer coefficients in the thermal evaluation of office buildings. Appl Therm Eng 87:258–272CrossRef
42.
Zurück zum Zitat McGrattan KB et al (2000) Fire dynamics simulator—technical reference guide. National Institute of Standards and Technology, Building and Fire Research …. McGrattan KB et al (2000) Fire dynamics simulator—technical reference guide. National Institute of Standards and Technology, Building and Fire Research ….
43.
Zurück zum Zitat Shi L et al (2019) Interaction effect of room opening and air inlet on solar chimney performance. Appl Therm Eng 159:113877–113888CrossRef Shi L et al (2019) Interaction effect of room opening and air inlet on solar chimney performance. Appl Therm Eng 159:113877–113888CrossRef
44.
Zurück zum Zitat Cheng XD et al (2018) Study on optimizing design of solar chimney for natural ventilation and smoke exhaustion. Energy Build 170:145–156CrossRef Cheng XD et al (2018) Study on optimizing design of solar chimney for natural ventilation and smoke exhaustion. Energy Build 170:145–156CrossRef
45.
Zurück zum Zitat Bouchair A (1989) Solar induced ventilation in the Algerian and similar climates. University of Leeds Bouchair A (1989) Solar induced ventilation in the Algerian and similar climates. University of Leeds
46.
Zurück zum Zitat Cheng X et al (2020) Solar chimney in tunnel considering energy-saving and fire safety. Energy 210:118601CrossRef Cheng X et al (2020) Solar chimney in tunnel considering energy-saving and fire safety. Energy 210:118601CrossRef
47.
Zurück zum Zitat Zhou Y et al (2019) Large Eddy Simulation of effectiveness of solid screen on improving natural ventilation performance in urban tunnels. Tunn Undergr Space Technol 86:174–185CrossRef Zhou Y et al (2019) Large Eddy Simulation of effectiveness of solid screen on improving natural ventilation performance in urban tunnels. Tunn Undergr Space Technol 86:174–185CrossRef
48.
Zurück zum Zitat Arce J et al (2009) Experimental study for natural ventilation on a solar chimney. Renewable Energy 34(12):2928–2934CrossRef Arce J et al (2009) Experimental study for natural ventilation on a solar chimney. Renewable Energy 34(12):2928–2934CrossRef
49.
Zurück zum Zitat Park D, Battaglia F (2015) Application of a wall-solar chimney for passive ventilation of dwellings. J Solar Energy Eng-Trans ASME 137(6) Park D, Battaglia F (2015) Application of a wall-solar chimney for passive ventilation of dwellings. J Solar Energy Eng-Trans ASME 137(6)
50.
Zurück zum Zitat Zhang TT, Yang HX (2019) Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar facades. Appl Energy 242:107–120CrossRef Zhang TT, Yang HX (2019) Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar facades. Appl Energy 242:107–120CrossRef
51.
Zurück zum Zitat Bassiouny R, Koura NSA (2008) An analytical and numerical study of solar chimney use for room natural ventilation. Energy Build 40(5):865–873CrossRef Bassiouny R, Koura NSA (2008) An analytical and numerical study of solar chimney use for room natural ventilation. Energy Build 40(5):865–873CrossRef
52.
Zurück zum Zitat Gan GH (2010) Simulation of buoyancy-driven natural ventilation of buildings—impact of computational domain. Energy Build 42(8):1290–1300CrossRef Gan GH (2010) Simulation of buoyancy-driven natural ventilation of buildings—impact of computational domain. Energy Build 42(8):1290–1300CrossRef
53.
Zurück zum Zitat Shi L et al (2016) Developing an empirical model for roof solar chimney based on experimental data from various test rigs. Build Environ 110:115–128CrossRef Shi L et al (2016) Developing an empirical model for roof solar chimney based on experimental data from various test rigs. Build Environ 110:115–128CrossRef
54.
Zurück zum Zitat Andersen KT (1995) Theoretical considerations on natural ventilation by thermal buoyancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers … Andersen KT (1995) Theoretical considerations on natural ventilation by thermal buoyancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers …
Metadaten
Titel
A Mathematical Model for SC-Assisted Stack Ventilation in Multi-storey Buildings
verfasst von
Long Shi
Haihua Zhang
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-45218-5_7