Skip to main content
Erschienen in: Journal of Polymer Research 8/2023

01.08.2023 | Original Paper

Biobased reprocessable polyisobutylene - polyurethane networks

verfasst von: Elif Kurnaz, Sinan Şen, Nihan Nugay, Turgut Nugay

Erschienen in: Journal of Polymer Research | Ausgabe 8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A synthetic strategy for the preparation of novel and reprocessable biobased polyisobutylene (PIB) – polyurethane (PU) network with soybean oil (SBO) derivative was reported. For this purpose, SBO triglycerides were converted to a polyol with primary hydroxyl functionalities via UV activated thiol-ene chemistry. Optimization of grafting of hydroxyl groups was performed by varying the process parameters such as ratios of both initiator and thiol to double bond as well as the irradiation time. SBO/PIB based PU network (X-SBO/PIB-PU) was then prepared by successful integration of the SBO based polyol to PIB-PU formulation as a co-polyol. The resultant network formed a nearly optically clear film which can be swollen in good solvent. Selective cleavage of the ester bonds by acid catalyzed hydrolysis was found to be an efficient way to solubilize the network by enabling the recovery of polyurethane segments with carboxylic acid functionalities. Thermal, mechanical and microstructural characterization data confirmed that hydrolysis of the network can be conducted without disturbing the polyurethane structures with high mechanical and thermal stability. It has been suggested that hydrolyzed X-SBO/PIB-PU (H-SBO/PIB-PU) with polar functional groups can then be used as building block in the development of polymer conjugates formulated with rigid polymers and nanocomposites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Prisacariu C (2011) Polyurethane elastomers. From morphology to mechanical aspects. Springer, Vienna Prisacariu C (2011) Polyurethane elastomers. From morphology to mechanical aspects. Springer, Vienna
2.
Zurück zum Zitat Heath DE, Cooper SL (2013) In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science. An introduction to materials in medicine, 3rd edn. Academic Press Heath DE, Cooper SL (2013) In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science. An introduction to materials in medicine, 3rd edn. Academic Press
3.
Zurück zum Zitat Deodhar T, Nugay N, Nugay T, Patel R, Moggridge G, Kennedy JP (2023) Synthesis of high molecuar weight and strength polyisobutylene-based polyurethane and its use for the development of a synthetic heart valve. Macromol Rapid Commun 44:2200147CrossRef Deodhar T, Nugay N, Nugay T, Patel R, Moggridge G, Kennedy JP (2023) Synthesis of high molecuar weight and strength polyisobutylene-based polyurethane and its use for the development of a synthetic heart valve. Macromol Rapid Commun 44:2200147CrossRef
4.
Zurück zum Zitat Venkateshaiah A, Padil VVT, Nagalakshmaiah M, Waclawek S, Cernik M, Varma RS (2020) Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers 12:512PubMedPubMedCentralCrossRef Venkateshaiah A, Padil VVT, Nagalakshmaiah M, Waclawek S, Cernik M, Varma RS (2020) Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers 12:512PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Chaffin KA, Buckalew AJ, Schley JL, Chen X, Jolly M, Alkatout JA, Miller JP, Untereker DF, Hillmyer MA, Bates FS (2012) Influence of water on the structure and properties of PDMS containing multiblock polyurethanes. Macromolecules 45:9110–9120CrossRef Chaffin KA, Buckalew AJ, Schley JL, Chen X, Jolly M, Alkatout JA, Miller JP, Untereker DF, Hillmyer MA, Bates FS (2012) Influence of water on the structure and properties of PDMS containing multiblock polyurethanes. Macromolecules 45:9110–9120CrossRef
6.
Zurück zum Zitat Chaffin KA, Chen X, McNamara L, Bates FS, Hillmyer MA (2014) Polyether urethane hydrolytic stability after exposure to deoxygenated water. Macromolecules 47:5220–5226CrossRef Chaffin KA, Chen X, McNamara L, Bates FS, Hillmyer MA (2014) Polyether urethane hydrolytic stability after exposure to deoxygenated water. Macromolecules 47:5220–5226CrossRef
7.
Zurück zum Zitat Crago M, Lee A, Farajikhah S, Oveissi F, Fletcher DF, Dehghani F, Winlaw DS, Naficy S (2022) The evolution of polyurethane heart valve replacements: How chemistry translates to the clinic. Mater Today Commun 33:104916CrossRef Crago M, Lee A, Farajikhah S, Oveissi F, Fletcher DF, Dehghani F, Winlaw DS, Naficy S (2022) The evolution of polyurethane heart valve replacements: How chemistry translates to the clinic. Mater Today Commun 33:104916CrossRef
8.
Zurück zum Zitat Kang J, Erdodi G, Kennedy JP (2011) Polyisobutylene-based polyurethanes with unprecedented properties and how they came about. J Polym Sci Part A Polym Chem 49:3891–3904CrossRef Kang J, Erdodi G, Kennedy JP (2011) Polyisobutylene-based polyurethanes with unprecedented properties and how they came about. J Polym Sci Part A Polym Chem 49:3891–3904CrossRef
9.
Zurück zum Zitat Odian G (2004) Principles of Polymerization. John Wiley and Sons, Hoboken, New JerseyCrossRef Odian G (2004) Principles of Polymerization. John Wiley and Sons, Hoboken, New JerseyCrossRef
10.
Zurück zum Zitat Pinchuk L, Wilson GJ, Barry JJ, Schoephoerster RT, Parel JM, Kennedy JP (2008) Medical applications of poly(styrene-block-isobutylene-block-styrene)(“SIBS”)). Biomaterials 29:448–460PubMedCrossRef Pinchuk L, Wilson GJ, Barry JJ, Schoephoerster RT, Parel JM, Kennedy JP (2008) Medical applications of poly(styrene-block-isobutylene-block-styrene)(“SIBS”)). Biomaterials 29:448–460PubMedCrossRef
11.
Zurück zum Zitat Kang J, Erdodi G, Brendel CM, Ely D, Kennedy JP (2010) Polyisobutylene-based polyurethanes. V. Oxidative-hydrolytic stability and biocompatibility. J Polym Sci Part A Polym Chem 48:2194–2203CrossRef Kang J, Erdodi G, Brendel CM, Ely D, Kennedy JP (2010) Polyisobutylene-based polyurethanes. V. Oxidative-hydrolytic stability and biocompatibility. J Polym Sci Part A Polym Chem 48:2194–2203CrossRef
12.
Zurück zum Zitat Kang J, Kennedy JP (2015) Hydrolytically stable polyurethanes. J Polym Sci Part A Polym Chem 53:1–4CrossRef Kang J, Kennedy JP (2015) Hydrolytically stable polyurethanes. J Polym Sci Part A Polym Chem 53:1–4CrossRef
13.
Zurück zum Zitat Toth K, Nugay N, Kennedy JP (2016) Polyisobutylene-based polyurethanes: VII. Structure/property investigations for medical applications. J Polym Sci Part A Polym Chem 54:532–543CrossRef Toth K, Nugay N, Kennedy JP (2016) Polyisobutylene-based polyurethanes: VII. Structure/property investigations for medical applications. J Polym Sci Part A Polym Chem 54:532–543CrossRef
14.
Zurück zum Zitat Kekec NC, Akolpoglu MB, Bozuyuk U, Kizilel S, Nugay N, Nugay T, Kennedy JP (2019) Calcification resistance of polyisobutylene and polyisobutylene-based materials. Polym Adv Technol 30:1836–1846CrossRef Kekec NC, Akolpoglu MB, Bozuyuk U, Kizilel S, Nugay N, Nugay T, Kennedy JP (2019) Calcification resistance of polyisobutylene and polyisobutylene-based materials. Polym Adv Technol 30:1836–1846CrossRef
15.
Zurück zum Zitat Senel Kekec NC (2023) High strength polyisobutylene based structures: synthesis, characterization and suitability for biomedical applications. Doctoral dissertation, Bogazici University Senel Kekec NC (2023) High strength polyisobutylene based structures: synthesis, characterization and suitability for biomedical applications. Doctoral dissertation, Bogazici University
16.
Zurück zum Zitat Weldels S, Averous L (2021) Biobased polyurethanes for biomedical applications. Bioact Mater 6:1083–1106CrossRef Weldels S, Averous L (2021) Biobased polyurethanes for biomedical applications. Bioact Mater 6:1083–1106CrossRef
17.
Zurück zum Zitat Pechar TW, Sohn S, Wilkes GL, Ghosh S, Frazier CE, Fornof A, Long TE (2006) Characterization and comparison of polyurethane networks prepared using soybean-based polyols with varying hydroxyl content and their blends with petroleum-based polyols. J Appl Polym Sci 101:1432–1443CrossRef Pechar TW, Sohn S, Wilkes GL, Ghosh S, Frazier CE, Fornof A, Long TE (2006) Characterization and comparison of polyurethane networks prepared using soybean-based polyols with varying hydroxyl content and their blends with petroleum-based polyols. J Appl Polym Sci 101:1432–1443CrossRef
18.
Zurück zum Zitat Robertson ML, Hillmyer MA, Mortamet AC, Ryan AJ (2010) Biorenewable Multiphase Polymers. MRS Bull 35:194–200CrossRef Robertson ML, Hillmyer MA, Mortamet AC, Ryan AJ (2010) Biorenewable Multiphase Polymers. MRS Bull 35:194–200CrossRef
19.
Zurück zum Zitat Morales-Cerrada R, Tavernier R, Caillol S (2021) Fully Bio-Based Thermosetting Polyurethanes from Bio-Based Polyols and Isocyanates. Polymers 13(8):1255PubMedPubMedCentralCrossRef Morales-Cerrada R, Tavernier R, Caillol S (2021) Fully Bio-Based Thermosetting Polyurethanes from Bio-Based Polyols and Isocyanates. Polymers 13(8):1255PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Kennedy JP, Erdodi G, Jewrajka S (2010) Polymers having both hard and soft segments, and process for making same, WO 2010/039986 A1 Kennedy JP, Erdodi G, Jewrajka S (2010) Polymers having both hard and soft segments, and process for making same, WO 2010/039986 A1
21.
Zurück zum Zitat Murgasova R, Brantley EL, Hercules DM, Nefzger H (2002) Characterization of polyester-polyurethane soft and hard blocks by a combination of MALDI, SEC, and chemical degradation. Macromolecules 35:8338–8345CrossRef Murgasova R, Brantley EL, Hercules DM, Nefzger H (2002) Characterization of polyester-polyurethane soft and hard blocks by a combination of MALDI, SEC, and chemical degradation. Macromolecules 35:8338–8345CrossRef
22.
Zurück zum Zitat Chapman TM (1989) Models for polyurethane hydrolysis under moderately acidic conditions: a comparative study of hydrolysis rates of urethanes, ureas, and amides. J Polym Sci Part A Polym Chem 27:1993–2005CrossRef Chapman TM (1989) Models for polyurethane hydrolysis under moderately acidic conditions: a comparative study of hydrolysis rates of urethanes, ureas, and amides. J Polym Sci Part A Polym Chem 27:1993–2005CrossRef
23.
Zurück zum Zitat Erman B, Baysal BM (1985) Temperature dependence of swelling of polystyrene networks. Macromolecules 18:1696–1700CrossRef Erman B, Baysal BM (1985) Temperature dependence of swelling of polystyrene networks. Macromolecules 18:1696–1700CrossRef
24.
Zurück zum Zitat Sugiyama F, Kleinschmidt AT, Kayser LV, Rodriquez D, Finn M, Alkhadra MA, Wan JMH, Ramírez J, Chiang ASC, Root SE, Savagatrupa S, Lipomi DJ (2018) Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymer. Polym Chem 9:4354PubMedPubMedCentralCrossRef Sugiyama F, Kleinschmidt AT, Kayser LV, Rodriquez D, Finn M, Alkhadra MA, Wan JMH, Ramírez J, Chiang ASC, Root SE, Savagatrupa S, Lipomi DJ (2018) Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymer. Polym Chem 9:4354PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802PubMedCrossRef Meier MAR, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802PubMedCrossRef
26.
Zurück zum Zitat Pfister DP, Xia Y, Larock RC (2011) Recent advances in vegetable oil-based polyurethanes. Chemsuschem 4:703–717PubMedCrossRef Pfister DP, Xia Y, Larock RC (2011) Recent advances in vegetable oil-based polyurethanes. Chemsuschem 4:703–717PubMedCrossRef
27.
Zurück zum Zitat Lligadas G, Ronda JC, Galia M, Cadiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: Current state-of-the-art. Biomacromol 11:2825–2835CrossRef Lligadas G, Ronda JC, Galia M, Cadiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: Current state-of-the-art. Biomacromol 11:2825–2835CrossRef
28.
Zurück zum Zitat Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909CrossRef Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909CrossRef
29.
Zurück zum Zitat Petrovic ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155CrossRef Petrovic ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155CrossRef
30.
Zurück zum Zitat Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B (2012) From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products. Polym Rev 52:38–79CrossRef Desroches M, Escouvois M, Auvergne R, Caillol S, Boutevin B (2012) From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products. Polym Rev 52:38–79CrossRef
31.
Zurück zum Zitat Sawpan AM (2018) Polyurethanes from vegetable oils and applications-a review. J Polym Res 25:184CrossRef Sawpan AM (2018) Polyurethanes from vegetable oils and applications-a review. J Polym Res 25:184CrossRef
32.
Zurück zum Zitat Rahman MZ, Rahman M, Mahbub T, Ashiquzzaman M, Sagadevan S, Hoque ME (2023) Advanced biopolymers for automobile and aviation engineering applications. J Polym Res 30:106CrossRef Rahman MZ, Rahman M, Mahbub T, Ashiquzzaman M, Sagadevan S, Hoque ME (2023) Advanced biopolymers for automobile and aviation engineering applications. J Polym Res 30:106CrossRef
33.
Zurück zum Zitat Alagi P, Ghorpade R, Jang JH, Patil C, Jirimali H, Gite V, Hong SC (2018) Functional soybean oil-based polyols as sustainable feedstocks for polyurethane coatings. Ind Crops Prod 113:249–258CrossRef Alagi P, Ghorpade R, Jang JH, Patil C, Jirimali H, Gite V, Hong SC (2018) Functional soybean oil-based polyols as sustainable feedstocks for polyurethane coatings. Ind Crops Prod 113:249–258CrossRef
34.
Zurück zum Zitat Desroches M, Caillol S, Lapinte V, Auvergne R, Boutevin B (2011) Synthesis of biobased polyols by thiol-ene coupling from vegetable oils. Macromolecules 44:2489–2500CrossRef Desroches M, Caillol S, Lapinte V, Auvergne R, Boutevin B (2011) Synthesis of biobased polyols by thiol-ene coupling from vegetable oils. Macromolecules 44:2489–2500CrossRef
35.
Zurück zum Zitat Caillol S, Desroches M, Carlotti S, Auvergne R, Boutevin B (2013) Synthesis of new polyurethanes from vegetable oil by thiol-ene coupling. Green Mater 1:16–26CrossRef Caillol S, Desroches M, Carlotti S, Auvergne R, Boutevin B (2013) Synthesis of new polyurethanes from vegetable oil by thiol-ene coupling. Green Mater 1:16–26CrossRef
36.
Zurück zum Zitat Alagi P, Choi YJ, Seog J, Hong SC (2016) Efficient and quantitative chemical transformation of vegetable oils topolyols through a thiol-ene reaction for thermoplastic polyurethanes. Ind Crops Prod 87:78–88CrossRef Alagi P, Choi YJ, Seog J, Hong SC (2016) Efficient and quantitative chemical transformation of vegetable oils topolyols through a thiol-ene reaction for thermoplastic polyurethanes. Ind Crops Prod 87:78–88CrossRef
37.
Zurück zum Zitat Alagi P, Choi YJ, Hong SC (2016) Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane. Eur Polym J 78:46–60CrossRef Alagi P, Choi YJ, Hong SC (2016) Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane. Eur Polym J 78:46–60CrossRef
38.
Zurück zum Zitat Samuelsson J, Jonsson M, Brinck T, Johansson M (2004) Thiol–ene coupling reaction of fatty acid monomers. J Polym Sci Part A Polym Chem 42:6346–6352CrossRef Samuelsson J, Jonsson M, Brinck T, Johansson M (2004) Thiol–ene coupling reaction of fatty acid monomers. J Polym Sci Part A Polym Chem 42:6346–6352CrossRef
39.
Zurück zum Zitat Turunc O, Meier MAR (2010) Fatty acid derived monomers and related polymers via thiol-ene (click) additions. Macromol Rapid Commun 31:1822–1826PubMedCrossRef Turunc O, Meier MAR (2010) Fatty acid derived monomers and related polymers via thiol-ene (click) additions. Macromol Rapid Commun 31:1822–1826PubMedCrossRef
40.
Zurück zum Zitat Lluch C, Ronda JC, Galia M, Lligadas G, Cadiz V (2010) Rapid approach to biobased telechelics through two one-pot thiol-ene click reactions. Biomacromol 11:1646–1653CrossRef Lluch C, Ronda JC, Galia M, Lligadas G, Cadiz V (2010) Rapid approach to biobased telechelics through two one-pot thiol-ene click reactions. Biomacromol 11:1646–1653CrossRef
41.
Zurück zum Zitat Desroches M, Caillol S, Auvergne R, Boutevin B, David G (2012) Biobased cross-linked polyurethanes obtained from ester/amide pseudo-diols of fatty acid derivatives synthesized by thiol–ene coupling. Polym Chem 3:450–457CrossRef Desroches M, Caillol S, Auvergne R, Boutevin B, David G (2012) Biobased cross-linked polyurethanes obtained from ester/amide pseudo-diols of fatty acid derivatives synthesized by thiol–ene coupling. Polym Chem 3:450–457CrossRef
42.
Zurück zum Zitat Pham PD, Lapinte V, Raoul Y, Robin JJ (2014) Lipidic polyols using thiol-ene/yne strategy for crosslinked polyurethanes J Polym Sci Part A Polym Chem 52:1597–1606CrossRef Pham PD, Lapinte V, Raoul Y, Robin JJ (2014) Lipidic polyols using thiol-ene/yne strategy for crosslinked polyurethanes J Polym Sci Part A Polym Chem 52:1597–1606CrossRef
43.
Zurück zum Zitat Barison A, da Silva CW, Campos FR, Simonelli F, Lenz CA, Ferreira AG (2010) A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn Reson Chem 48:642–650PubMed Barison A, da Silva CW, Campos FR, Simonelli F, Lenz CA, Ferreira AG (2010) A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy. Magn Reson Chem 48:642–650PubMed
44.
Zurück zum Zitat Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E (2006) Applications of fourier transform-infrared spectroscopy to edible oils. Anal Chim Acta 573–574:459–465PubMedCrossRef Vlachos N, Skopelitis Y, Psaroudaki M, Konstantinidou V, Chatzilazarou A, Tegou E (2006) Applications of fourier transform-infrared spectroscopy to edible oils. Anal Chim Acta 573–574:459–465PubMedCrossRef
45.
Zurück zum Zitat Zhang Q, Saleh ASM, Shen Q (2016) Monitoring of changes in composition of soybean oil during deep-fat frying with different food types. J Am Oil Chem Soc 93:69–81CrossRef Zhang Q, Saleh ASM, Shen Q (2016) Monitoring of changes in composition of soybean oil during deep-fat frying with different food types. J Am Oil Chem Soc 93:69–81CrossRef
46.
Zurück zum Zitat Poiana MA, Alexa E, Munteanu MF, Gligor R, Moigradean D, Mateescu C (2015) Use of ATR-FTIR spectroscopy to detect the changes in extra virgin olive oil by adulteration with soybean oil and high temperature heat treatment. Open Chem 13:689–698CrossRef Poiana MA, Alexa E, Munteanu MF, Gligor R, Moigradean D, Mateescu C (2015) Use of ATR-FTIR spectroscopy to detect the changes in extra virgin olive oil by adulteration with soybean oil and high temperature heat treatment. Open Chem 13:689–698CrossRef
47.
Zurück zum Zitat Srichatrapimuk VW, Cooper SL (1978) Infrared thermal analysis of polyurethane block polymers. J Macromol Sci Part B Phys 15:267–311CrossRef Srichatrapimuk VW, Cooper SL (1978) Infrared thermal analysis of polyurethane block polymers. J Macromol Sci Part B Phys 15:267–311CrossRef
48.
Zurück zum Zitat Walch E, Gaymans RJ (1994) Telechelic polyisobutylene with unsaturated end groups and with anhydride end groups. Polymer 35:1774–1778CrossRef Walch E, Gaymans RJ (1994) Telechelic polyisobutylene with unsaturated end groups and with anhydride end groups. Polymer 35:1774–1778CrossRef
49.
Zurück zum Zitat Socrates G (2001) Infrared and raman characteristic group frequencies tables and charts, 3rd edn. Wiley, Chichester Socrates G (2001) Infrared and raman characteristic group frequencies tables and charts, 3rd edn. Wiley, Chichester
50.
Zurück zum Zitat Lu QW, Hoye TR, Macosko CW (2002) Reactivity of common functional groups with urethanes: Models for reactive compatibilization of thermoplastic polyurethane blends. J Polym Sci Part A Polym Chem 40:2310–2328CrossRef Lu QW, Hoye TR, Macosko CW (2002) Reactivity of common functional groups with urethanes: Models for reactive compatibilization of thermoplastic polyurethane blends. J Polym Sci Part A Polym Chem 40:2310–2328CrossRef
51.
Zurück zum Zitat Toth K, Kekec NC, Nugay N, Kennedy JP (2016) Polyisobutylene-based polyurethanes. VIII. Polyurethanes with -O-S-PIB-S-O- soft segments. J Polym Sci Part A Polym Chem 54:1119–1131CrossRef Toth K, Kekec NC, Nugay N, Kennedy JP (2016) Polyisobutylene-based polyurethanes. VIII. Polyurethanes with -O-S-PIB-S-O- soft segments. J Polym Sci Part A Polym Chem 54:1119–1131CrossRef
52.
Zurück zum Zitat Lligadas G, Ronda JC, Galià M, Biermann U, Metzger JO (2006) Synthesis and characterization of polyurethanes from epoxidized methyl oleate based polyether polyols as renewable resources. J Polym Sci Part A Polym Chem 44:634CrossRef Lligadas G, Ronda JC, Galià M, Biermann U, Metzger JO (2006) Synthesis and characterization of polyurethanes from epoxidized methyl oleate based polyether polyols as renewable resources. J Polym Sci Part A Polym Chem 44:634CrossRef
53.
Zurück zum Zitat Nugay N, Nugay T, Deodhar T, Keszler BL, Kennedy JP (2018) Low cost bifunctional initiators for bidirectional living cationic polymerization of olefins. II. Hyperbranched styrene–isobutylene–styrene triblocks with superior combination of properties. J Polym Sci Part A Polym Chem 56:705–713CrossRef Nugay N, Nugay T, Deodhar T, Keszler BL, Kennedy JP (2018) Low cost bifunctional initiators for bidirectional living cationic polymerization of olefins. II. Hyperbranched styrene–isobutylene–styrene triblocks with superior combination of properties. J Polym Sci Part A Polym Chem 56:705–713CrossRef
54.
Zurück zum Zitat Hu L, Pu Z, Zhong Y, Liu L, Cheng J, Zhong J (2020) Effect of different carboxylic acid group contents on microstructure and properties of waterborne polyurethane dispersions. J Polym Res 27:129CrossRef Hu L, Pu Z, Zhong Y, Liu L, Cheng J, Zhong J (2020) Effect of different carboxylic acid group contents on microstructure and properties of waterborne polyurethane dispersions. J Polym Res 27:129CrossRef
55.
Zurück zum Zitat Levchik GF, Si K, Levchik SV, Camino G, Wilkie CA (1999) The correlation between cross-linking and thermal stability: Cross-linked polystyrenes and polymethacrylates. Polym Degrad Stab 65:395–403CrossRef Levchik GF, Si K, Levchik SV, Camino G, Wilkie CA (1999) The correlation between cross-linking and thermal stability: Cross-linked polystyrenes and polymethacrylates. Polym Degrad Stab 65:395–403CrossRef
56.
Zurück zum Zitat Mittal N, Benselfelt T, Ansari F, Gordeyeva K, Roth SV, Wagberg L, Söderberg LD (2019) Ion-specific assembly of strong, tough, and stiff biofibers. Angew Chem Int 58:18562–18569CrossRef Mittal N, Benselfelt T, Ansari F, Gordeyeva K, Roth SV, Wagberg L, Söderberg LD (2019) Ion-specific assembly of strong, tough, and stiff biofibers. Angew Chem Int 58:18562–18569CrossRef
Metadaten
Titel
Biobased reprocessable polyisobutylene - polyurethane networks
verfasst von
Elif Kurnaz
Sinan Şen
Nihan Nugay
Turgut Nugay
Publikationsdatum
01.08.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 8/2023
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-023-03715-5

Weitere Artikel der Ausgabe 8/2023

Journal of Polymer Research 8/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.