Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 2/2021

03.01.2021 | Original Paper

Capacity expansion of power plants using dynamic energy analysis

verfasst von: Manish Pyakurel, Kalpesh Nawandar, Venkatasailanathan Ramadesigan, Santanu Bandyopadhyay

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The growing electricity demand impels the expansion of generation capacity. For an effective and detailed planning, it is vital to know the supply capacity and the growth potential of a power plant technology. For the growth of a power generation technology, the electricity generated from it needs reinvestment for the construction of newer power plants, other than just meeting the demand. This paper proposes a framework employing dynamic energy analysis to examine the capacity expansion, growth potential and energy dynamics of six different technologies (solar PV, wind, hydro, nuclear, coal and gas). The power plant characteristics include lifetime, construction time, energy payback time and energy reinvestment factor. Energy payback time, relative to the lifetime of a power plant, is the primary constraint in capacity expansion. We analyze energy reinvestment strategies, affecting the growth rate, and determine its optimal value. The solar PV power plant has the least maximum growth potential of 15%, while gas power plant has the highest maximum growth potential of 124%. Relationships are developed to find the minimum time frame required to follow a self-sustainable path with optimal reinvestment for any technology. A case study is presented to reach the global demand capacity target for the year 2030 following a low-carbon-emission path.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alsema EA (2000) Energy pay-back time and CO2 emissions of PV systems. Prog Photovoltaics Res Appl 8(1):17–25CrossRef Alsema EA (2000) Energy pay-back time and CO2 emissions of PV systems. Prog Photovoltaics Res Appl 8(1):17–25CrossRef
Zurück zum Zitat Arun P, Banerjee R, Bandyopadhyay S (2009) Optimum sizing of photovoltaic battery systems incorporating uncertainty through design space approach. Sol Energy 83(7):1013–1025CrossRef Arun P, Banerjee R, Bandyopadhyay S (2009) Optimum sizing of photovoltaic battery systems incorporating uncertainty through design space approach. Sol Energy 83(7):1013–1025CrossRef
Zurück zum Zitat Bandyopadhyay S (2020) Interval pinch analysis for resource conservation networks with epistemic uncertainties. Ind Eng Chem Res 59(30):13669–13681CrossRef Bandyopadhyay S (2020) Interval pinch analysis for resource conservation networks with epistemic uncertainties. Ind Eng Chem Res 59(30):13669–13681CrossRef
Zurück zum Zitat Barrett, M., and Spataru, C. (2015, March). DyneMo: a dynamic energy model for the exploration of energy, society and environment. In: 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim). IEEE, pp 255–260 Barrett, M., and Spataru, C. (2015, March). DyneMo: a dynamic energy model for the exploration of energy, society and environment. In: 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim). IEEE, pp 255–260
Zurück zum Zitat Becerra-Lopez HR, Golding P (2007) Dynamic exergy analysis for capacity expansion of regional power-generation systems: case study of far West Texas. Energy 32(11):2167–2186CrossRef Becerra-Lopez HR, Golding P (2007) Dynamic exergy analysis for capacity expansion of regional power-generation systems: case study of far West Texas. Energy 32(11):2167–2186CrossRef
Zurück zum Zitat Brockway PE, Owen A, Brand-Correa LI, Hardt L (2019) Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat Energy 4(7):612–621CrossRef Brockway PE, Owen A, Brand-Correa LI, Hardt L (2019) Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat Energy 4(7):612–621CrossRef
Zurück zum Zitat Brundtland Commission (1987) World commission on environment and development. Our Common Future Brundtland Commission (1987) World commission on environment and development. Our Common Future
Zurück zum Zitat Buceti G (2014) Sustainable power density in electricity generation. Manag Environ Qual Int J 25(1):5–18CrossRef Buceti G (2014) Sustainable power density in electricity generation. Manag Environ Qual Int J 25(1):5–18CrossRef
Zurück zum Zitat Buonocore E, Vanoli L, Carotenuto A, Ulgiati S (2015) Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy. Energy 86:476–487CrossRef Buonocore E, Vanoli L, Carotenuto A, Ulgiati S (2015) Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy. Energy 86:476–487CrossRef
Zurück zum Zitat Capellán-Pérez I, de Castro C, González LJM (2019) Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev 26:100399CrossRef Capellán-Pérez I, de Castro C, González LJM (2019) Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Rev 26:100399CrossRef
Zurück zum Zitat Carbajales-Dale M, Barnhart CJ, Benson SM (2014) Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage. Energy Environ Sci 7(5):1538–1544CrossRef Carbajales-Dale M, Barnhart CJ, Benson SM (2014) Can we afford storage? A dynamic net energy analysis of renewable electricity generation supported by energy storage. Energy Environ Sci 7(5):1538–1544CrossRef
Zurück zum Zitat Carley S, Andrews RN (2012) Creating a sustainable US electricity sector: the question of scale. Policy Sci 45(2):97–121CrossRef Carley S, Andrews RN (2012) Creating a sustainable US electricity sector: the question of scale. Policy Sci 45(2):97–121CrossRef
Zurück zum Zitat Cleveland CJ, Costanza R, Hall CA, Kaufmann R (1984) Energy and the US economy: a biophysical perspective. Science 225(4665):890–897CrossRef Cleveland CJ, Costanza R, Hall CA, Kaufmann R (1984) Energy and the US economy: a biophysical perspective. Science 225(4665):890–897CrossRef
Zurück zum Zitat Destek MA, Aslan A (2017) Renewable and non-renewable energy consumption and economic growth in emerging economies: evidence from bootstrap panel causality. Renew Energy 111:757–763CrossRef Destek MA, Aslan A (2017) Renewable and non-renewable energy consumption and economic growth in emerging economies: evidence from bootstrap panel causality. Renew Energy 111:757–763CrossRef
Zurück zum Zitat Emmott CJM, Ekins-Daukes NJ, Nelson J (2014) Dynamic carbon mitigation analysis: the role of thin-film photovoltaics. Energy Environ Sci 7(6):1810–1818CrossRef Emmott CJM, Ekins-Daukes NJ, Nelson J (2014) Dynamic carbon mitigation analysis: the role of thin-film photovoltaics. Energy Environ Sci 7(6):1810–1818CrossRef
Zurück zum Zitat Gibon T, Arvesen A, Hertwich EG (2017) Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options. Renew Sustain Energy Rev 76:1283–1290CrossRef Gibon T, Arvesen A, Hertwich EG (2017) Life cycle assessment demonstrates environmental co-benefits and trade-offs of low-carbon electricity supply options. Renew Sustain Energy Rev 76:1283–1290CrossRef
Zurück zum Zitat Hall CA, Cleveland CJ, Kaufmann R (1986) Energy and resource quality: the ecology of the economic process. Wiley Interscience, New York Hall CA, Cleveland CJ, Kaufmann R (1986) Energy and resource quality: the ecology of the economic process. Wiley Interscience, New York
Zurück zum Zitat Hondo H (2005) Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 30(11–12):2042–2056CrossRef Hondo H (2005) Life cycle GHG emission analysis of power generation systems: Japanese case. Energy 30(11–12):2042–2056CrossRef
Zurück zum Zitat Hu Y, Hall CA, Wang J, Feng L, Poisson A (2013) Energy Return on Investment (EROI) of China’s conventional fossil fuels: Historical and future trends. Energy 54:352–364CrossRef Hu Y, Hall CA, Wang J, Feng L, Poisson A (2013) Energy Return on Investment (EROI) of China’s conventional fossil fuels: Historical and future trends. Energy 54:352–364CrossRef
Zurück zum Zitat Huang YF, Gan XJ, Chiueh PT (2017) Life cycle assessment and net energy analysis of offshore wind power systems. Renew Energy 102:98–106CrossRef Huang YF, Gan XJ, Chiueh PT (2017) Life cycle assessment and net energy analysis of offshore wind power systems. Renew Energy 102:98–106CrossRef
Zurück zum Zitat International Energy Agency (IEA) (2017a) Report on CO2 emissions from fuel combustion International Energy Agency (IEA) (2017a) Report on CO2 emissions from fuel combustion
Zurück zum Zitat International Energy Agency (IEA) (2017b) Report on key world energy statistics International Energy Agency (IEA) (2017b) Report on key world energy statistics
Zurück zum Zitat IPCC (2018) Global warming of 1.5 °C. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty IPCC (2018) Global warming of 1.5 °C. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty
Zurück zum Zitat Jones C, Gilbert P, Raugei M, Mander S, Leccisi E (2017) An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation. Energy Policy 100:350–358CrossRef Jones C, Gilbert P, Raugei M, Mander S, Leccisi E (2017) An approach to prospective consequential life cycle assessment and net energy analysis of distributed electricity generation. Energy Policy 100:350–358CrossRef
Zurück zum Zitat Kato K, Murata A, Sakuta K (1998) Energy payback time and life-cycle CO2 emission of residential PV power system with silicon PV module. Prog Photovoltaics Res Appl 6(2):105–115CrossRef Kato K, Murata A, Sakuta K (1998) Energy payback time and life-cycle CO2 emission of residential PV power system with silicon PV module. Prog Photovoltaics Res Appl 6(2):105–115CrossRef
Zurück zum Zitat Kenny R, Law C, Pearce JM (2010) Towards real energy economics: energy policy driven by life-cycle carbon emission. Energy Policy 38(4):1969–1978CrossRef Kenny R, Law C, Pearce JM (2010) Towards real energy economics: energy policy driven by life-cycle carbon emission. Energy Policy 38(4):1969–1978CrossRef
Zurück zum Zitat Kessides IN, Wade DC (2011a) Towards a sustainable global energy supply infrastructure: net energy balance and density considerations. Energy Policy 39:5322–5334CrossRef Kessides IN, Wade DC (2011a) Towards a sustainable global energy supply infrastructure: net energy balance and density considerations. Energy Policy 39:5322–5334CrossRef
Zurück zum Zitat Kessides IN, Wade DC (2011b) Deriving an improved dynamic EROI to provide better information for energy planners. Sustainability 3(12):2339–2357CrossRef Kessides IN, Wade DC (2011b) Deriving an improved dynamic EROI to provide better information for energy planners. Sustainability 3(12):2339–2357CrossRef
Zurück zum Zitat Khan I (2019) Greenhouse gas emission accounting approaches in electricity generation systems: a review. Atmos Environ 200:131–141CrossRef Khan I (2019) Greenhouse gas emission accounting approaches in electricity generation systems: a review. Atmos Environ 200:131–141CrossRef
Zurück zum Zitat Krishna Priya GS, Bandyopadhyay S (2017) Multi-objective pinch analysis for power system planning. Appl Energy 202:335–347CrossRef Krishna Priya GS, Bandyopadhyay S (2017) Multi-objective pinch analysis for power system planning. Appl Energy 202:335–347CrossRef
Zurück zum Zitat Mathur J, Bansal NK, Wagner HJ (2004) Dynamic energy analysis to assess maximum growth rates in developing generation capacity: case study of India. Energy Policy 32:281–287CrossRef Mathur J, Bansal NK, Wagner HJ (2004) Dynamic energy analysis to assess maximum growth rates in developing generation capacity: case study of India. Energy Policy 32:281–287CrossRef
Zurück zum Zitat Neumeyer C, Goldston R (2016) Dynamic EROI assessment of the IPCC 21st century electricity production scenario. Sustainability 8(5):421CrossRef Neumeyer C, Goldston R (2016) Dynamic EROI assessment of the IPCC 21st century electricity production scenario. Sustainability 8(5):421CrossRef
Zurück zum Zitat Nuclear Energy Agency (NEA) (2015) Report on nuclear energy: combating climate change Nuclear Energy Agency (NEA) (2015) Report on nuclear energy: combating climate change
Zurück zum Zitat Østergaard PA, Duic N, Noorollahi Y, Mikulcic H, Kalogirou S (2020) Sustainable development using renewable energy technology. Renew Energy 146:2430–2437CrossRef Østergaard PA, Duic N, Noorollahi Y, Mikulcic H, Kalogirou S (2020) Sustainable development using renewable energy technology. Renew Energy 146:2430–2437CrossRef
Zurück zum Zitat Peng J, Lu L, Yang H (2013) Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew Sustain Energy Rev 19:255–274CrossRef Peng J, Lu L, Yang H (2013) Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renew Sustain Energy Rev 19:255–274CrossRef
Zurück zum Zitat Pearce JM (2008) Thermodynamic limitations to nuclear energy deployment as a greenhouse gas mitigation technology. Int J Nuclear Govern Economy Ecol 2(1):113–130 Pearce JM (2008) Thermodynamic limitations to nuclear energy deployment as a greenhouse gas mitigation technology. Int J Nuclear Govern Economy Ecol 2(1):113–130
Zurück zum Zitat Pires JCM (2019) Negative emissions technologies: a complementary solution for climate change mitigation. Sci Total Environ 672:502–514CrossRef Pires JCM (2019) Negative emissions technologies: a complementary solution for climate change mitigation. Sci Total Environ 672:502–514CrossRef
Zurück zum Zitat Raadal HL, Gagnon L, Modahl IS, Hanssen OJ (2011) Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power. Renew Sustain Energy Rev 15(7):3417–3422CrossRef Raadal HL, Gagnon L, Modahl IS, Hanssen OJ (2011) Life cycle greenhouse gas (GHG) emissions from the generation of wind and hydro power. Renew Sustain Energy Rev 15(7):3417–3422CrossRef
Zurück zum Zitat Raugei M (2019) Net energy analysis must not compare apples and oranges. Nat Energy 4(2):86–88CrossRef Raugei M (2019) Net energy analysis must not compare apples and oranges. Nat Energy 4(2):86–88CrossRef
Zurück zum Zitat Roy A, Kedare SB, Bandyopadhyay S (2010) Optimum sizing of wind-battery systems incorporating resource uncertainty. Appl Energy 87(8):2712–2727CrossRef Roy A, Kedare SB, Bandyopadhyay S (2010) Optimum sizing of wind-battery systems incorporating resource uncertainty. Appl Energy 87(8):2712–2727CrossRef
Zurück zum Zitat Siddiqui O, Dincer I (2017) Comparative assessment of the environmental impacts of nuclear, wind and hydro-electric power plants in Ontario: a life cycle assessment. J Cleaner Prod 164:848–860CrossRef Siddiqui O, Dincer I (2017) Comparative assessment of the environmental impacts of nuclear, wind and hydro-electric power plants in Ontario: a life cycle assessment. J Cleaner Prod 164:848–860CrossRef
Zurück zum Zitat Sims RE, Rogner HH, Gregory K (2003) Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy 31(13):1315–1326CrossRef Sims RE, Rogner HH, Gregory K (2003) Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy 31(13):1315–1326CrossRef
Zurück zum Zitat Steffen B, Hischier D, Schmidt TS (2018) Historical and projected improvements in net energy performance of power generation technologies. Energy Environ Sci 11(12):3524–3530CrossRef Steffen B, Hischier D, Schmidt TS (2018) Historical and projected improvements in net energy performance of power generation technologies. Energy Environ Sci 11(12):3524–3530CrossRef
Zurück zum Zitat Tan RR, Foo DCY (2007) Pinch analysis approach to carbon constrained energy sector planning. Energy 32(8):1422–1429CrossRef Tan RR, Foo DCY (2007) Pinch analysis approach to carbon constrained energy sector planning. Energy 32(8):1422–1429CrossRef
Zurück zum Zitat Walmsley TG, Walmsley MR, Atkins MJ (2017) Energy Return on energy and carbon investment of wind energy farms: a case study of New Zealand. J Cleaner Prod 167:885–895CrossRef Walmsley TG, Walmsley MR, Atkins MJ (2017) Energy Return on energy and carbon investment of wind energy farms: a case study of New Zealand. J Cleaner Prod 167:885–895CrossRef
Zurück zum Zitat Wang Z, Xu G, Wang H, Ren J (2019) Distributed energy system for sustainability transition: a comprehensive assessment under uncertainties based on interval multi-criteria decision making method by coupling interval DEMATEL and interval VIKOR. Energy 169:750–761CrossRef Wang Z, Xu G, Wang H, Ren J (2019) Distributed energy system for sustainability transition: a comprehensive assessment under uncertainties based on interval multi-criteria decision making method by coupling interval DEMATEL and interval VIKOR. Energy 169:750–761CrossRef
Zurück zum Zitat Weißbach D, Ruprecht G, Huke A, Czerski K, Gottlieb S, Hussein A (2013) Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 52:210–221CrossRef Weißbach D, Ruprecht G, Huke A, Czerski K, Gottlieb S, Hussein A (2013) Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 52:210–221CrossRef
Zurück zum Zitat World Population Prospects—Population Division United Nations. esa.un.org. Retrieved 15 Jun 2017 World Population Prospects—Population Division United Nations. esa.un.org. Retrieved 15 Jun 2017
Zurück zum Zitat Wu P, Ma X, Ji J, Ma Y (2017) Review on life cycle assessment of greenhouse gas emission profit of solar photovoltaic systems. Energy Proc 105:1289–1294CrossRef Wu P, Ma X, Ji J, Ma Y (2017) Review on life cycle assessment of greenhouse gas emission profit of solar photovoltaic systems. Energy Proc 105:1289–1294CrossRef
Zurück zum Zitat Xu L, Pang M, Zhang L, Poganietz WR, Marathe SD (2018) Life cycle assessment of onshore wind power systems in China. Resour Conserv Recycl 132:361–368CrossRef Xu L, Pang M, Zhang L, Poganietz WR, Marathe SD (2018) Life cycle assessment of onshore wind power systems in China. Resour Conserv Recycl 132:361–368CrossRef
Zurück zum Zitat World Energy Outlook Special Report (2015) Energy and Climate Change, IEA World Energy Outlook Special Report (2015) Energy and Climate Change, IEA
Metadaten
Titel
Capacity expansion of power plants using dynamic energy analysis
verfasst von
Manish Pyakurel
Kalpesh Nawandar
Venkatasailanathan Ramadesigan
Santanu Bandyopadhyay
Publikationsdatum
03.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 2/2021
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-020-01995-9

Weitere Artikel der Ausgabe 2/2021

Clean Technologies and Environmental Policy 2/2021 Zur Ausgabe