Skip to main content

2024 | OriginalPaper | Buchkapitel

Cellulose and Lignin Nanoparticles in the Development of New Sustainable Applications

verfasst von : Braz S. Marotti, Valdeir Arantes

Erschienen in: Biorefinery and Industry 4.0: Empowering Sustainability

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose nanoparticles (CNs) have emerged as one of the most promising eco-friendly materials due to their sustainable potential and outstanding physical and mechanical properties. These properties include exceptional optical attributes, an anisotropic shape, and high mechanical strength. A significant factor that adds to their appeal is that they are derived from cellulose, a resource that is abundant, non-toxic, biodegradable, and biocompatible resource. Lignin, which once was considered an undesirable by-product of the pulping process, has been the subject of extensive research to enhance its value. Although it is primarily used to produce renewable energy in industries, the growing potential of lignin from both process and economic perspectives is noteworthy, especially as the global demand for bio-based products increases. However, the methods employed to valorize this macromolecule present challenges, leaving lignin a somewhat underexploited renewable resource. An innovative approach for lignin has been its conversion into lignin nanoparticles (LNPs). Both LNPs and CNs are emerging as valuable materials in a range of applications in materials engineering, from packaging to biomedical fields. The development of new nanocomposites, derived from CNs and LNPs, merges the benefits of these nanomaterials with their plant-based origins. When integrated with other polymeric matrices, they offer unique properties such as hydrophobicity, UV protection, and antimicrobial activity. This chapter explores the latest advancements in CNs and LNPs production and their potential uses, drawing from contemporary literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cho EJ et al. (2020) Bioconversion of biomass waste into high value chemicals. Bioresour Technol 298(November 2019):122386 Cho EJ et al. (2020) Bioconversion of biomass waste into high value chemicals. Bioresour Technol 298(November 2019):122386
2.
Zurück zum Zitat Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5(2):76–89, 15 Jun 2019 Dufresne A (2019) Nanocellulose processing properties and potential applications. Curr For Rep 5(2):76–89, 15 Jun 2019
3.
Zurück zum Zitat Inoue BS et al (2020) Bioactive bacterial cellulose membrane with prolonged release of chlorhexidine for dental medical application. Int J Biol Macromolecules 148:1098–1108. Inoue BS et al (2020) Bioactive bacterial cellulose membrane with prolonged release of chlorhexidine for dental medical application. Int J Biol Macromolecules 148:1098–1108.
4.
Zurück zum Zitat Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90(March):877–891CrossRef Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90(March):877–891CrossRef
5.
Zurück zum Zitat Lin D et al (2020) International Journal of Biological Macromolecules Bacterial cellulose in food industry : current research and future prospects. Int J Biol Macromolecules 158:1007–1019 Lin D et al (2020) International Journal of Biological Macromolecules Bacterial cellulose in food industry : current research and future prospects. Int J Biol Macromolecules 158:1007–1019
6.
Zurück zum Zitat Seabra AB et al (2018) Cellulose nanocrystals as carriers in medicine and their toxicities: a review. Carbohydr Polym 181(n. December 2017), 514–527 Seabra AB et al (2018) Cellulose nanocrystals as carriers in medicine and their toxicities: a review. Carbohydr Polym 181(n. December 2017), 514–527
7.
Zurück zum Zitat Yang J, Li J (2018) Self-assembled cellulose materials for biomedicine : a review. Carbohydr Polym 181(August 2017):264–274 Yang J, Li J (2018) Self-assembled cellulose materials for biomedicine : a review. Carbohydr Polym 181(August 2017):264–274
8.
Zurück zum Zitat GE, S. et al. An assessment of agricultural waste cellulosic biofuel for improved combustion and emission characteristics. Science of The Total Environment, v. 813, p. 152418, mar. 2022. GE, S. et al. An assessment of agricultural waste cellulosic biofuel for improved combustion and emission characteristics. Science of The Total Environment, v. 813, p. 152418, mar. 2022.
9.
Zurück zum Zitat Leibensperger C et al (2021) The synergy between stakeholders for cellulosic biofuel development: perspectives, opportunities, and barriers. Renew Sustain Energy Rev 137:110613, Mar 2021 Leibensperger C et al (2021) The synergy between stakeholders for cellulosic biofuel development: perspectives, opportunities, and barriers. Renew Sustain Energy Rev 137:110613, Mar 2021
10.
Zurück zum Zitat Teow YH, Amirudin SN, Ho KC (2020) Sustainable approach to the synthesis of cellulose membrane from oil palm empty fruit bunch for dye wastewater treatment. J Water Process Eng 34(February):101182 Teow YH, Amirudin SN, Ho KC (2020) Sustainable approach to the synthesis of cellulose membrane from oil palm empty fruit bunch for dye wastewater treatment. J Water Process Eng 34(February):101182
11.
Zurück zum Zitat Tong R et al (2020) Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices. Carbohydr Polym 227(July 2019) Tong R et al (2020) Highly transparent, weakly hydrophilic and biodegradable cellulose film for flexible electroluminescent devices. Carbohydr Polym 227(July 2019)
13.
Zurück zum Zitat Omran AAB et al (2021) Micro- and nanocellulose in polymer composite materials: a review. Polymers 13(2):231, 11 Jan 2021 Omran AAB et al (2021) Micro- and nanocellulose in polymer composite materials: a review. Polymers 13(2):231, 11 Jan 2021
14.
Zurück zum Zitat Song Z, Xiao H, Zhao Y (2014) Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohyd Polym 111:442–448CrossRef Song Z, Xiao H, Zhao Y (2014) Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohyd Polym 111:442–448CrossRef
15.
Zurück zum Zitat Ahmad D et al (2018) Hydrophilic and hydrophobic materials and their applications. Energy Sources Part A: Recovery, Utilization, Environ Eff 40(22):2686–2725, 17 Nov 2018 Ahmad D et al (2018) Hydrophilic and hydrophobic materials and their applications. Energy Sources Part A: Recovery, Utilization, Environ Eff 40(22):2686–2725, 17 Nov 2018
16.
Zurück zum Zitat Daud JB, LEE K-Y (2017) Surface modification of nanocellulose. In: Hanieh K et al (eds) Handbook of nanocellulose and cellulose nanocomposites. Wiley-VCH, Weinheim, v 1, p 101–123 Daud JB, LEE K-Y (2017) Surface modification of nanocellulose. In: Hanieh K et al (eds) Handbook of nanocellulose and cellulose nanocomposites. Wiley-VCH, Weinheim, v 1, p 101–123
17.
Zurück zum Zitat Zhang J et al (2021) Corrosion protection properties of an environmentally friendly polyvinyl alcohol coating reinforced by a heating treatment and lignin nanocellulose. Prog Organic Coat 155(January):106224, Jun 2021 Zhang J et al (2021) Corrosion protection properties of an environmentally friendly polyvinyl alcohol coating reinforced by a heating treatment and lignin nanocellulose. Prog Organic Coat 155(January):106224, Jun 2021
18.
Zurück zum Zitat Kontturi KS et al (2017) Noncovalent surface modification of cellulose nanopapers by adsorption of polymers from aprotic solvents. Langmuir 33(23):5707–5712 Kontturi KS et al (2017) Noncovalent surface modification of cellulose nanopapers by adsorption of polymers from aprotic solvents. Langmuir 33(23):5707–5712
19.
Zurück zum Zitat Rol F et al (2019) Recent advances in surface-modified cellulose nanofibrils. Progress in Polym Sci 88:241–264, Jan 2019 Rol F et al (2019) Recent advances in surface-modified cellulose nanofibrils. Progress in Polym Sci 88:241–264, Jan 2019
20.
Zurück zum Zitat Gupta AK, Mohanty S, Nayak SK (2015) Synthesis, characterization and application of lignin nanoparticles (LNPs). Mater Focus 3(6):444–454CrossRef Gupta AK, Mohanty S, Nayak SK (2015) Synthesis, characterization and application of lignin nanoparticles (LNPs). Mater Focus 3(6):444–454CrossRef
21.
Zurück zum Zitat Tian D et al (2017) Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol Biofuels 10(1):1–11 Tian D et al (2017) Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol Biofuels 10(1):1–11
22.
Zurück zum Zitat Yang W et al (2015) Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 71:126–139, Out Yang W et al (2015) Effect of processing conditions and lignin content on thermal, mechanical and degradative behavior of lignin nanoparticles/polylactic (acid) bionanocomposites prepared by melt extrusion and solvent casting. Eur Polym J 71:126–139, Out
23.
Zurück zum Zitat Kargarzadeh H et al (2017) Methods for extraction of nanocellulose from various sources. In: Kargarzadeh H et al (eds) Handbook of nanocellulose and cellulose nanocomposites. 1. Ed, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–50 Kargarzadeh H et al (2017) Methods for extraction of nanocellulose from various sources. In: Kargarzadeh H et al (eds) Handbook of nanocellulose and cellulose nanocomposites. 1. Ed, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–50
24.
Zurück zum Zitat Huang J et al (2017) Fully green cellulose nanocomposites. In: Hanieh K et al (eds) Handbook of nanocellulose and cellulose nanocomposites. 1. ed. Wiley-VCH, Weinheim, v. Ip. 301–334 Huang J et al (2017) Fully green cellulose nanocomposites. In: Hanieh K et al (eds) Handbook of nanocellulose and cellulose nanocomposites. 1. ed. Wiley-VCH, Weinheim, v. Ip. 301–334
25.
Zurück zum Zitat Hamedi M et al (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52(46):12038–12042 Hamedi M et al (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52(46):12038–12042
26.
Zurück zum Zitat Kim JH et al (2015) Review of nanocellulose for sustainable future materials. Int J Precision Eng Manufacturing Green Technol 2(2):197–213 Kim JH et al (2015) Review of nanocellulose for sustainable future materials. Int J Precision Eng Manufacturing Green Technol 2(2):197–213
27.
Zurück zum Zitat Li Y et al (2017) Nanocellulose aerogels inspired by Frozen Tofu. ACS Sustain Chem Eng 5(8):6387–6391 Li Y et al (2017) Nanocellulose aerogels inspired by Frozen Tofu. ACS Sustain Chem Eng 5(8):6387–6391
28.
Zurück zum Zitat MI QY et al. (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4(3):656–660 MI QY et al. (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4(3):656–660
29.
Zurück zum Zitat Lin N et al (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B: Biointerfaces 85(2):270–279, Jul 2011 Lin N et al (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B: Biointerfaces 85(2):270–279, Jul 2011
30.
Zurück zum Zitat Shimotoyodome A et al (2011) Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12(10):3812–3818, 10 Out 2011 Shimotoyodome A et al (2011) Regulation of postprandial blood metabolic variables by TEMPO-oxidized cellulose nanofibers. Biomacromolecules 12(10):3812–3818, 10 Out 2011
31.
Zurück zum Zitat Zhu C et al (2014) Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. J Biomed Mater Res Part A, 102(5):1548–1557, Maio 2014 Zhu C et al (2014) Kombucha-synthesized bacterial cellulose: preparation, characterization, and biocompatibility evaluation. J Biomed Mater Res Part A, 102(5):1548–1557, Maio 2014
32.
Zurück zum Zitat Paulraj T, Riazanova AV, Svagan AJ (2018) Bioinspired capsules based on nanocellulose, xyloglucan and pectin—The influence of capsule wall composition on permeability properties. Acta Biomaterialia 69:196–205, 15 Mar 2018 Paulraj T, Riazanova AV, Svagan AJ (2018) Bioinspired capsules based on nanocellulose, xyloglucan and pectin—The influence of capsule wall composition on permeability properties. Acta Biomaterialia 69:196–205, 15 Mar 2018
33.
Zurück zum Zitat Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohyd Polym 92(2):1432–1442MathSciNetCrossRef Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohyd Polym 92(2):1432–1442MathSciNetCrossRef
34.
Zurück zum Zitat Khan A et al (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54(2):163–174 Khan A et al (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54(2):163–174
35.
Zurück zum Zitat Lin N and Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325, Out 2014 Lin N and Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325, Out 2014
36.
Zurück zum Zitat Berto GL, Arantes V (2019) Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining. Int J Biol Macromol 127:637–648CrossRef Berto GL, Arantes V (2019) Kinetic changes in cellulose properties during defibrillation into microfibrillated cellulose and cellulose nanofibrils by ultra-refining. Int J Biol Macromol 127:637–648CrossRef
37.
Zurück zum Zitat Koponen AI (2020) The effect of consistency on the shear rheology of aqueous suspensions of cellulose micro- and nanofibrils: a review. Cellulose 27(4):1879–1897, 12 Mar 2020 Koponen AI (2020) The effect of consistency on the shear rheology of aqueous suspensions of cellulose micro- and nanofibrils: a review. Cellulose 27(4):1879–1897, 12 Mar 2020
38.
Zurück zum Zitat Nair SS et al (2014) High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends. ChemSusChem 7(12):3513–3520 Nair SS et al (2014) High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends. ChemSusChem 7(12):3513–3520
39.
Zurück zum Zitat Nechyporchuk O, Pignon F, Belgacem MN (2014) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541CrossRef Nechyporchuk O, Pignon F, Belgacem MN (2014) Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process. J Mater Sci 50(2):531–541CrossRef
40.
Zurück zum Zitat Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574CrossRef Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574CrossRef
41.
Zurück zum Zitat Jozala A F et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100(5):2063–2072, 8 Mar 2016 Jozala A F et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100(5):2063–2072, 8 Mar 2016
42.
Zurück zum Zitat Dusfrene A (2012) Nanocellulose : From nature to high performance tailored materials. In: Dufresne A (ed) Nanocellulose : From nature to high performance tailored materials. 1. ed. Munchen: [s.n.]. p. 1 Dusfrene A (2012) Nanocellulose : From nature to high performance tailored materials. In: Dufresne A (ed) Nanocellulose : From nature to high performance tailored materials. 1. ed. Munchen: [s.n.]. p. 1
43.
Zurück zum Zitat Salas C et al (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396, out. 2014 Salas C et al (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396, out. 2014
44.
Zurück zum Zitat Trache D et al (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786 Trache D et al (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786
45.
Zurück zum Zitat Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79(4):1086–1093CrossRef Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohyd Polym 79(4):1086–1093CrossRef
46.
Zurück zum Zitat Espinosa E et al (2019) PVA/(ligno)nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. Int J Biol Macromolecules 141:197–206, Dec 2019 Espinosa E et al (2019) PVA/(ligno)nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. Int J Biol Macromolecules 141:197–206, Dec 2019
47.
Zurück zum Zitat Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107CrossRef Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107CrossRef
48.
Zurück zum Zitat Hoeger IC et al (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2):807–818 Hoeger IC et al (2013) Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2):807–818
49.
Zurück zum Zitat QING Y et al (2015) Facile preparation of optically transparent and hydrophobic cellulose nanofibril composite films. Ind Crops Products 77:13–20 QING Y et al (2015) Facile preparation of optically transparent and hydrophobic cellulose nanofibril composite films. Ind Crops Products 77:13–20
50.
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
51.
Zurück zum Zitat Tasker S et al (1994) Hydroxyl accessibility in celluloses. Polym 35(22):4717–4721 Tasker S et al (1994) Hydroxyl accessibility in celluloses. Polym 35(22):4717–4721
52.
Zurück zum Zitat Fengel D, Wegener G (1983) Cellulose. Em: WOOD: chemistry, ultrastructure, reactions. 1. ed. Walter de Gruyter, Berlin, pp 66–105 Fengel D, Wegener G (1983) Cellulose. Em: WOOD: chemistry, ultrastructure, reactions. 1. ed. Walter de Gruyter, Berlin, pp 66–105
53.
Zurück zum Zitat Hebeish A, Guthrie JT (1981) The chemistry and technology of cellulosic copolymers. Springer, Berlin Hebeish A, Guthrie JT (1981) The chemistry and technology of cellulosic copolymers. Springer, Berlin
54.
Zurück zum Zitat Trejo-O’reilly JA, Cavaille JY, Gandini A (1997) The surface chemical modification of cellulosic fibres in view of their use in composite materials. Cellulose 4(4):305–320 Trejo-O’reilly JA, Cavaille JY, Gandini A (1997) The surface chemical modification of cellulosic fibres in view of their use in composite materials. Cellulose 4(4):305–320
55.
Zurück zum Zitat Siqueira G et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158 Siqueira G et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158
56.
Zurück zum Zitat Xie J, Liu S (2021) A review of hydrophobic nanocellulose and its applications. Paper Biomater 6(2):35–42 Xie J, Liu S (2021) A review of hydrophobic nanocellulose and its applications. Paper Biomater 6(2):35–42
57.
Zurück zum Zitat GOU J et al (2021) A phosphorylated nanocellulose/hydroxypropyl methylcellulose composite matrix: a biodegradable, flame-retardant and self-standing gel polymer electrolyte towards eco-friendly and high safety lithium ion batteries. Eur Polym J 158(June):110703, Set 2021 GOU J et al (2021) A phosphorylated nanocellulose/hydroxypropyl methylcellulose composite matrix: a biodegradable, flame-retardant and self-standing gel polymer electrolyte towards eco-friendly and high safety lithium ion batteries. Eur Polym J 158(June):110703, Set 2021
58.
Zurück zum Zitat Kim Y et al (2022) Highly efficient Cr(VI) remediation by cationic functionalized nanocellulose beads. J Hazard Mater 426(November 2021):128078, Mar 2022 Kim Y et al (2022) Highly efficient Cr(VI) remediation by cationic functionalized nanocellulose beads. J Hazard Mater 426(November 2021):128078, Mar 2022
59.
Zurück zum Zitat Abraham E et al (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8(41):28086–28095, 19 out 2016 Abraham E et al (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8(41):28086–28095, 19 out 2016
60.
Zurück zum Zitat Korhonen JT et al (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816 Korhonen JT et al (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816
61.
Zurück zum Zitat Lacerda PSS et al (2013) Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromolecules 14(6):2063–2073 Lacerda PSS et al (2013) Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers. Biomacromolecules 14(6):2063–2073
62.
Zurück zum Zitat Lin W et al (2018) Hydrophobic modification of Nanocellulose via a Two-Step silanation method. Polym 10(9):1035 Lin W et al (2018) Hydrophobic modification of Nanocellulose via a Two-Step silanation method. Polym 10(9):1035
63.
Zurück zum Zitat Tanpichai S et al (2022) Review of the recent developments in all-cellulose nanocomposites: properties and applications. Carbohydr Polym 286(February):119192, Jun 2022 Tanpichai S et al (2022) Review of the recent developments in all-cellulose nanocomposites: properties and applications. Carbohydr Polym 286(February):119192, Jun 2022
64.
Zurück zum Zitat Nohara T et al (2016) Enzymatic synthesis of oligo(ethylene glycol)-bearing cellulose oligomers for in situ formation of hydrogels with crystalline nanoribbon network structures. Langmuir 32(47):12520–12526 Nohara T et al (2016) Enzymatic synthesis of oligo(ethylene glycol)-bearing cellulose oligomers for in situ formation of hydrogels with crystalline nanoribbon network structures. Langmuir 32(47):12520–12526
65.
Zurück zum Zitat Raquez JM et al (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542 Raquez JM et al (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542
66.
Zurück zum Zitat Espino-Pérez E et al (2016) Cellulose nanocrystal surface functionalization for the controlled sorption of water and organic vapours. Cellulose 23(5):2955–2970 Espino-Pérez E et al (2016) Cellulose nanocrystal surface functionalization for the controlled sorption of water and organic vapours. Cellulose 23(5):2955–2970
67.
Zurück zum Zitat Eyholzer C et al (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17(1):19–30 Eyholzer C et al (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17(1):19–30
68.
Zurück zum Zitat Dandekar T (2016) Modified bacterial nanocelluloses and its uses in chip cards and medicine. WO 2016/174104 Al. Alemanha, 2016 Dandekar T (2016) Modified bacterial nanocelluloses and its uses in chip cards and medicine. WO 2016/174104 Al. Alemanha, 2016
69.
Zurück zum Zitat Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173CrossRef Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173CrossRef
70.
Zurück zum Zitat Yudong Z et al (2013) A method for preparing esterified responsive nanocellulose prodrug sustained release material stimulation. China Yudong Z et al (2013) A method for preparing esterified responsive nanocellulose prodrug sustained release material stimulation. China
71.
Zurück zum Zitat Sreeraj PR, Mishra SK, Singh PK (2022) Characteristic features and functions of nanocellulose for its feasible application in textile industry. Em: Nanocellulose Mater . [s.l.] Elsevier, 2022. 105–122 Sreeraj PR, Mishra SK, Singh PK (2022) Characteristic features and functions of nanocellulose for its feasible application in textile industry. Em: Nanocellulose Mater . [s.l.] Elsevier, 2022. 105–122
72.
Zurück zum Zitat Karampelas BE (2016) Automotive tires containing hydrophobic nanocellulose US 2016/0122515 A1. USA Karampelas BE (2016) Automotive tires containing hydrophobic nanocellulose US 2016/0122515 A1. USA
73.
Zurück zum Zitat Xin F et al (2014) Preparation method of transparent nano-cellulose paper with fluorescence properties. China Xin F et al (2014) Preparation method of transparent nano-cellulose paper with fluorescence properties. China
74.
Zurück zum Zitat ABDULKHANI A et al (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79 ABDULKHANI A et al (2014) Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym Test 35:73–79
75.
Zurück zum Zitat BOŽIČ M et al (2015) New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor. Carbohydr Polym 125:340–351 BOŽIČ M et al (2015) New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor. Carbohydr Polym 125:340–351
76.
Zurück zum Zitat Sirviö JA et al (2015) Phosphonated nanocelluloses from sequential oxidative–reductive treatment—Physicochemical characteristics and thermal properties. Carbohydr Polym 133:524–532, Nov 2015 Sirviö JA et al (2015) Phosphonated nanocelluloses from sequential oxidative–reductive treatment—Physicochemical characteristics and thermal properties. Carbohydr Polym 133:524–532, Nov 2015
77.
Zurück zum Zitat Suopajärvi T, Sirviö JA, Liimatainen H (2017) Cationic nanocelluloses in dewatering of municipal activated sludge. J Environ Chem Eng 5(1):86–92CrossRef Suopajärvi T, Sirviö JA, Liimatainen H (2017) Cationic nanocelluloses in dewatering of municipal activated sludge. J Environ Chem Eng 5(1):86–92CrossRef
78.
Zurück zum Zitat Ma H, Hsiao BS, Chu B (2012) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO 2 2+ in water. ACS Macro Lett 1(1):213–216, 17 Jan 2012 Ma H, Hsiao BS, Chu B (2012) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO 2 2+ in water. ACS Macro Lett 1(1):213–216, 17 Jan 2012
79.
Zurück zum Zitat Sehaqui H et al (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21(4):2831–2844, 7 ago. 2014 Sehaqui H et al (2014) Enhancing adsorption of heavy metal ions onto biobased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21(4):2831–2844, 7 ago. 2014
80.
Zurück zum Zitat Alvarado DR et al (2019) A facile strategy for photoactive nanocellulose-based antimicrobial materials. Green Chem 21(12):3424–3435 Alvarado DR et al (2019) A facile strategy for photoactive nanocellulose-based antimicrobial materials. Green Chem 21(12):3424–3435
81.
Zurück zum Zitat Sun M, Wang H, Li X (2020) Modification of cellulose microfibers by polyglutamic acid and mesoporous silica nanoparticles for Enterovirus 71 adsorption. Mater Lett 277(January):128320, Out. 2020 Sun M, Wang H, Li X (2020) Modification of cellulose microfibers by polyglutamic acid and mesoporous silica nanoparticles for Enterovirus 71 adsorption. Mater Lett 277(January):128320, Out. 2020
82.
Zurück zum Zitat Stenstad P et al (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15(1):35–45 Stenstad P et al (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15(1):35–45
83.
Zurück zum Zitat Karim Z et al (2017) In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv 7(9):5232–5241 Karim Z et al (2017) In situ TEMPO surface functionalization of nanocellulose membranes for enhanced adsorption of metal ions from aqueous medium. RSC Adv 7(9):5232–5241
84.
Zurück zum Zitat Liu D et al (2014) Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir 30(31):9544–9550, 12 ago 2014 Liu D et al (2014) Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir 30(31):9544–9550, 12 ago 2014
85.
Zurück zum Zitat Liu P et al (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21(1):449–461, 5 Feb 2014 Liu P et al (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21(1):449–461, 5 Feb 2014
86.
Zurück zum Zitat Rusmirović JD et al (2017) Novel modified nanocellulose applicable as reinforcement in high-performance nanocomposites. Carbohydr Polym 164:64–74 Rusmirović JD et al (2017) Novel modified nanocellulose applicable as reinforcement in high-performance nanocomposites. Carbohydr Polym 164:64–74
87.
Zurück zum Zitat Ansari F et al (2015) Strong surface treatment effects on reinforcement efficiency in biocomposites based on cellulose nanocrystals in poly(vinyl acetate) Matrix. Biomacromolecules, 16(12):3916–3924, 14 dec 2015 Ansari F et al (2015) Strong surface treatment effects on reinforcement efficiency in biocomposites based on cellulose nanocrystals in poly(vinyl acetate) Matrix. Biomacromolecules, 16(12):3916–3924, 14 dec 2015
88.
Zurück zum Zitat Poaty B et al (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Organic Coat 77(4):813–820, Abr 2014 Poaty B et al (2014) Modification of cellulose nanocrystals as reinforcement derivatives for wood coatings. Prog Organic Coat 77(4):813–820, Abr 2014
89.
Zurück zum Zitat Satyamurth P, Nadanathangam V (2018) Nanocellulose as functional filler in starch/polyvinyl alcohol film for preparation of urea biosensor Prasad Satyamurthy and. Curr Sci 114(February):897–902CrossRef Satyamurth P, Nadanathangam V (2018) Nanocellulose as functional filler in starch/polyvinyl alcohol film for preparation of urea biosensor Prasad Satyamurthy and. Curr Sci 114(February):897–902CrossRef
90.
Zurück zum Zitat Espino-Pérez E et al (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15(12):4551–4560 Espino-Pérez E et al (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15(12):4551–4560
91.
Zurück zum Zitat Li ZQ, Zhou XD, Pei CH (2010a) Synthesis of PLA-co-PGMA copolymer and its application in the surface modification of bacterial cellulose. Int J Polym Mater Polym Biomater 59(9):725–737CrossRef Li ZQ, Zhou XD, Pei CH (2010a) Synthesis of PLA-co-PGMA copolymer and its application in the surface modification of bacterial cellulose. Int J Polym Mater Polym Biomater 59(9):725–737CrossRef
92.
Zurück zum Zitat Zhijiang C et al (2018) Preparation, characterization and antibacterial activity of biodegradable polyindole/bacterial cellulose conductive nanocomposite fiber membrane. Mater Lett 222:146–149, Jul 2018 Zhijiang C et al (2018) Preparation, characterization and antibacterial activity of biodegradable polyindole/bacterial cellulose conductive nanocomposite fiber membrane. Mater Lett 222:146–149, Jul 2018
93.
Zurück zum Zitat Shahriari-Khalaji M et al (2021) Functionalization of Aminoalkylsilane-grafted bacterial nanocellulose with ZnO-NPs-doped pullulan electrospun nanofibers for multifunctional wound dressing. ACS Biomater Sci Eng 7(8):3933–3946, 9 ago. 2021 Shahriari-Khalaji M et al (2021) Functionalization of Aminoalkylsilane-grafted bacterial nanocellulose with ZnO-NPs-doped pullulan electrospun nanofibers for multifunctional wound dressing. ACS Biomater Sci Eng 7(8):3933–3946, 9 ago. 2021
94.
Zurück zum Zitat Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innovative Res Sci Eng Technol 2(10):5444–5451 Islam MT, Alam MM, Zoccola M (2013) Review on modification of nanocellulose for application in composites. Int J Innovative Res Sci Eng Technol 2(10):5444–5451
95.
Zurück zum Zitat Wang L et al (2017) Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. Compos Part A Appl Sci Manuf 98:166–173 Wang L et al (2017) Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. Compos Part A Appl Sci Manuf 98:166–173
96.
Zurück zum Zitat Nascimento DM et al (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20(11):2428–2448 Nascimento DM et al (2018) Nanocellulose nanocomposite hydrogels: technological and environmental issues. Green Chem 20(11):2428–2448
97.
Zurück zum Zitat Alexandrescu L et al (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20(4):1765–1775 Alexandrescu L et al (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20(4):1765–1775
98.
Zurück zum Zitat LAM E et al (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283–290, Maio 2012 LAM E et al (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30(5):283–290, Maio 2012
99.
Zurück zum Zitat Hokkanen S, Sillanpää M (2020) Nano- and microcellulose-based adsorption materials in water treatment. Em: SILLANPÄÄ M (ed) Advanced water treatment: adsorption. 1. ed. Elsevier, Miami, p 1–83 Hokkanen S, Sillanpää M (2020) Nano- and microcellulose-based adsorption materials in water treatment. Em: SILLANPÄÄ M (ed) Advanced water treatment: adsorption. 1. ed. Elsevier, Miami, p 1–83
100.
Zurück zum Zitat BÖRJESSON M et al (2018) Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions. J Appl Polym Sci 135(10):45963, 10 Mar 2018 BÖRJESSON M et al (2018) Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions. J Appl Polym Sci 135(10):45963, 10 Mar 2018
101.
Zurück zum Zitat Credou J, Berthelot T (2014) Cellulose: from biocompatible to bioactive material. J Mater Chem B 2(30):4767–4788CrossRef Credou J, Berthelot T (2014) Cellulose: from biocompatible to bioactive material. J Mater Chem B 2(30):4767–4788CrossRef
102.
Zurück zum Zitat Li Z, Renneckar S, Barone JR (2010b) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17(1):57–68CrossRef Li Z, Renneckar S, Barone JR (2010b) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17(1):57–68CrossRef
103.
Zurück zum Zitat Garcia-Ubasart, J et al (2012) A new procedure for the hydrophobization of cellulose fibre using laccase and a hydrophobic phenolic compound. Bioresour Technol 112:341–344 Garcia-Ubasart, J et al (2012) A new procedure for the hydrophobization of cellulose fibre using laccase and a hydrophobic phenolic compound. Bioresour Technol 112:341–344
104.
Zurück zum Zitat Jaušovec D, Vogrinčič R, Kokol V (2015) Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85 Jaušovec D, Vogrinčič R, Kokol V (2015) Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85
105.
Zurück zum Zitat CAO L et al (1996) Lipase-catalyzed solid phase synthesis of sugar fatty acid esters. Biocatal Biotransformation 14(4):269–283 CAO L et al (1996) Lipase-catalyzed solid phase synthesis of sugar fatty acid esters. Biocatal Biotransformation 14(4):269–283
106.
Zurück zum Zitat Payne GF, Chaubal MV, Barbari TA (1996) Enzyme-catalysed polymer modification: Reaction of phenolic compounds with chitosan films. Polymer 37(20):4643–4648CrossRef Payne GF, Chaubal MV, Barbari TA (1996) Enzyme-catalysed polymer modification: Reaction of phenolic compounds with chitosan films. Polymer 37(20):4643–4648CrossRef
107.
Zurück zum Zitat Kamaya Y (1996) Role of endoglucanase in enzymatic modification of bleached kraft pulp. J Ferment Bioeng 82(6):549–553 Kamaya Y (1996) Role of endoglucanase in enzymatic modification of bleached kraft pulp. J Ferment Bioeng 82(6):549–553
108.
Zurück zum Zitat LI J et al (1999) Polycaprolactone-modified hydroxyethylcellulose films prepared by lipase-catalyzed ring-opening polymerization. Macromolecules 32(8):2789–2792 LI J et al (1999) Polycaprolactone-modified hydroxyethylcellulose films prepared by lipase-catalyzed ring-opening polymerization. Macromolecules 32(8):2789–2792
109.
Zurück zum Zitat Yang K, Wang YJ (2003) Lipase-catalyzed cellulose acetylation in aqueous and organic media. Biotechnol Prog 19(6):1664–1671CrossRef Yang K, Wang YJ (2003) Lipase-catalyzed cellulose acetylation in aqueous and organic media. Biotechnol Prog 19(6):1664–1671CrossRef
110.
Zurück zum Zitat Karim Z et al (2017) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechn 37(3):355–370 Karim Z et al (2017) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechn 37(3):355–370
111.
Zurück zum Zitat Nelson K, Retsina T (2014) Innovative nanocellulose process breaks the cost barrier. Tappi J 13(5):19–23CrossRef Nelson K, Retsina T (2014) Innovative nanocellulose process breaks the cost barrier. Tappi J 13(5):19–23CrossRef
113.
Zurück zum Zitat Wen Y et al (2019) Preparation and characterization of lignin-containing cellulose nanofibril from poplar high-yield pulp via TEMPO-mediated oxidation and homogenization. ACS Sustain Chem Eng 7(6):6131–6139 Wen Y et al (2019) Preparation and characterization of lignin-containing cellulose nanofibril from poplar high-yield pulp via TEMPO-mediated oxidation and homogenization. ACS Sustain Chem Eng 7(6):6131–6139
114.
Zurück zum Zitat Rojo E et al (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17(3):1853–1866 Rojo E et al (2015) Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chem 17(3):1853–1866
115.
Zurück zum Zitat Zhao H et al (2019) Preparation of nanocellulose and lignin-carbohydrate complex composite biological carriers and culture of heart coronary artery endothelial cells. Int J Biol Macromol 137:1161–1168, Set. 2019 Zhao H et al (2019) Preparation of nanocellulose and lignin-carbohydrate complex composite biological carriers and culture of heart coronary artery endothelial cells. Int J Biol Macromol 137:1161–1168, Set. 2019
116.
Zurück zum Zitat Nirmale TC, Kale BB, Varma AJA (2017) A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery. Int J Biol Macromol 103:1032–1043, Out 2017 Nirmale TC, Kale BB, Varma AJA (2017) A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery. Int J Biol Macromol 103:1032–1043, Out 2017
117.
Zurück zum Zitat Kazzaz AE, Fatehi P (2020) Technical lignin and its potential modification routes: a mini-review. Ind Crops Prod 154(July):112732, out 2020 Kazzaz AE, Fatehi P (2020) Technical lignin and its potential modification routes: a mini-review. Ind Crops Prod 154(July):112732, out 2020
118.
Zurück zum Zitat Sabaruddin FA et al (2020) The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polym 13(1):116 30 Dec 2020 Sabaruddin FA et al (2020) The effects of unbleached and bleached nanocellulose on the thermal and flammability of polypropylene-reinforced kenaf core hybrid polymer bionanocomposites. Polym 13(1):116 30 Dec 2020
119.
Zurück zum Zitat Yang M et al (2020) Preparation of lignin containing cellulose nanofibers and its application in PVA nanocomposite films. Int J Biol Macromol 158:1259–1267 Yang M et al (2020) Preparation of lignin containing cellulose nanofibers and its application in PVA nanocomposite films. Int J Biol Macromol 158:1259–1267
120.
Zurück zum Zitat Wang L et al (2021) On laccase-catalyzed polymerization of biorefinery lignin fractions and alignment of lignin nanoparticles on the nanocellulose SurfaceviaOne-pot water-phase synthesis. ACS Sustain Chem Eng 9(26):8770–8782 Wang L et al (2021) On laccase-catalyzed polymerization of biorefinery lignin fractions and alignment of lignin nanoparticles on the nanocellulose SurfaceviaOne-pot water-phase synthesis. ACS Sustain Chem Eng 9(26):8770–8782
121.
Zurück zum Zitat Zhang Z, Terrasson V, Guénin E (2021) Lignin nanoparticles and their nanocomposites. Nanomaterials 11(5) Zhang Z, Terrasson V, Guénin E (2021) Lignin nanoparticles and their nanocomposites. Nanomaterials 11(5)
122.
Zurück zum Zitat Chio C, Sain M, Qin W (2018) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev 107(December 2018):232–249 Chio C, Sain M, Qin W (2018) Lignin utilization: a review of lignin depolymerization from various aspects. Renew Sustain Energy Rev 107(December 2018):232–249
123.
Zurück zum Zitat Lievonen M et al (2016) A simple process for lignin nanoparticle preparation. Green Chem 18(5):1422 Lievonen M et al (2016) A simple process for lignin nanoparticle preparation. Green Chem 18(5):1422
124.
Zurück zum Zitat Cline SP, Smith PM (2017) Opportunities for lignin valorization: an exploratory process. Energ Sustain Soc 7(1):26, 28 Dec 2017 Cline SP, Smith PM (2017) Opportunities for lignin valorization: an exploratory process. Energ Sustain Soc 7(1):26, 28 Dec 2017
125.
Zurück zum Zitat ARO T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10(9):1861–1877, 9 maio 2017 ARO T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. ChemSusChem 10(9):1861–1877, 9 maio 2017
126.
Zurück zum Zitat CAO Y et al (2019) Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresour Technol 291(May, 2019) CAO Y et al (2019) Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresour Technol 291(May, 2019)
127.
Zurück zum Zitat Iravani S, Varma RS (2020) Greener synthesis of lignin nanoparticles and their applications. Green Chem 22(3):612–636CrossRef Iravani S, Varma RS (2020) Greener synthesis of lignin nanoparticles and their applications. Green Chem 22(3):612–636CrossRef
128.
Zurück zum Zitat Yang W et al (2015) Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate- g -poly (lactic acid) films before and after accelerated UV weathering. Ind Crops Prod 77:833–844, Dec 2015b Yang W et al (2015) Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate- g -poly (lactic acid) films before and after accelerated UV weathering. Ind Crops Prod 77:833–844, Dec 2015b
129.
Zurück zum Zitat Jiang C et al (2013) Nano-lignin filled natural rubber composites: Preparation and characterization. Express Polym Lett 7(5):480–493 Jiang C et al (2013) Nano-lignin filled natural rubber composites: Preparation and characterization. Express Polym Lett 7(5):480–493
130.
Zurück zum Zitat AGO M et al (2016) High-throughput synthesis of lignin particles (∼30 nm to ∼2 μm) via aerosol flow reactor: Size fractionation and utilization in pickering emulsions. ACS Appl Mater Interfaces 8(35):23302–23310 AGO M et al (2016) High-throughput synthesis of lignin particles (∼30 nm to ∼2 μm) via aerosol flow reactor: Size fractionation and utilization in pickering emulsions. ACS Appl Mater Interfaces 8(35):23302–23310
131.
Zurück zum Zitat Chen L et al (2018) Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application. Chem Eng J 346(January):217–225 Chen L et al (2018) Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application. Chem Eng J 346(January):217–225
132.
Zurück zum Zitat Spence KL et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111, 13 ago. 2011 Spence KL et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111, 13 ago. 2011
133.
Zurück zum Zitat XIONG, F. et al. Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly. Ind Crops Prod 100:146–152 XIONG, F. et al. Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly. Ind Crops Prod 100:146–152
134.
Zurück zum Zitat Myint AA et al (2016) One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent. Green Chem 18(7):2129–2146 Myint AA et al (2016) One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent. Green Chem 18(7):2129–2146
135.
Zurück zum Zitat Kai D et al (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18(5):1175–1200 Kai D et al (2016) Towards lignin-based functional materials in a sustainable world. Green Chem 18(5):1175–1200
136.
Zurück zum Zitat Saratale RG et al (2019) Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int J Biol Macromol 128:391–400, Maio 2019 Saratale RG et al (2019) Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int J Biol Macromol 128:391–400, Maio 2019
137.
Zurück zum Zitat CHEN Y et al (2019) Preparation and characterization of a nanolignin phenol formaldehyde resin by replacing phenol partially with lignin nanoparticles. RSC Adv 9(50):29255–29262 CHEN Y et al (2019) Preparation and characterization of a nanolignin phenol formaldehyde resin by replacing phenol partially with lignin nanoparticles. RSC Adv 9(50):29255–29262
138.
Zurück zum Zitat Chen Y et al (2019) Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Int J Biol Macromol 128:414–420 Chen Y et al (2019) Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Int J Biol Macromol 128:414–420
139.
Zurück zum Zitat Gilca IA, Popa VI, Crestini C (2015) Obtaining lignin nanoparticles by sonication. Ultrason Sonochem 23:369–375CrossRef Gilca IA, Popa VI, Crestini C (2015) Obtaining lignin nanoparticles by sonication. Ultrason Sonochem 23:369–375CrossRef
140.
Zurück zum Zitat Ge Y, Wei Q, Li Z (2014) Preparation and evaluation of the free radical scavenging activities of nanoscale lignin biomaterials. BioResources 9(4):6699–6706CrossRef Ge Y, Wei Q, Li Z (2014) Preparation and evaluation of the free radical scavenging activities of nanoscale lignin biomaterials. BioResources 9(4):6699–6706CrossRef
141.
Zurück zum Zitat Feldman D (2016) Lignin nanocomposites. J Macromol Sci Part A, 53(6):382–387, 2 Jun 2016 Feldman D (2016) Lignin nanocomposites. J Macromol Sci Part A, 53(6):382–387, 2 Jun 2016
142.
Zurück zum Zitat Sadeghifar H et al (2019) Bi-component carbohydrate and lignin nanoparticle production from bio-refinery lignin: a rapid and green method. BioResources 14(3):6179–6185 Sadeghifar H et al (2019) Bi-component carbohydrate and lignin nanoparticle production from bio-refinery lignin: a rapid and green method. BioResources 14(3):6179–6185
143.
Zurück zum Zitat Agustin MB et al (2019) Rapid and direct preparation of lignin nanoparticles from alkaline pulping liquor by Mild Ultrasonication. ACS Sustain Chem Eng 7(24):19925–19934 Agustin MB et al (2019) Rapid and direct preparation of lignin nanoparticles from alkaline pulping liquor by Mild Ultrasonication. ACS Sustain Chem Eng 7(24):19925–19934
144.
Zurück zum Zitat Garcia Gonzalez MN et al (2017) Lignin nanoparticles by ultrasonication and their incorporation in waterborne polymer nanocomposites. J Appl Polym Sci 134(38):1–10 Garcia Gonzalez MN et al (2017) Lignin nanoparticles by ultrasonication and their incorporation in waterborne polymer nanocomposites. J Appl Polym Sci 134(38):1–10
145.
Zurück zum Zitat Wang B et al Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustain Chem Eng 7(2):2658–2666 Wang B et al Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustain Chem Eng 7(2):2658–2666
146.
Zurück zum Zitat Yearla SR, Padmasree K (2016) Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants. J Exp Nanosci 11(4):289–302CrossRef Yearla SR, Padmasree K (2016) Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants. J Exp Nanosci 11(4):289–302CrossRef
147.
Zurück zum Zitat Sipponen MH et al (2018) Understanding lignin aggregation processes. A case study: budesonide entrapment and stimuli controlled release from lignin nanoparticles. ACS Sustain Chem Eng 6(7):9342–9351 Sipponen MH et al (2018) Understanding lignin aggregation processes. A case study: budesonide entrapment and stimuli controlled release from lignin nanoparticles. ACS Sustain Chem Eng 6(7):9342–9351
148.
Zurück zum Zitat Lintinen K et al (2018) Closed cycle production of concentrated and dry redispersible colloidal lignin particles with a three solvent polarity exchange method. Green Chem 20(4):843–850 Lintinen K et al (2018) Closed cycle production of concentrated and dry redispersible colloidal lignin particles with a three solvent polarity exchange method. Green Chem 20(4):843–850
149.
Zurück zum Zitat Yang W et al (2018) Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustainable Chem Eng 6(3):3502–3514 Yang W et al (2018) Valorization of acid isolated high yield lignin nanoparticles as innovative antioxidant/antimicrobial organic materials. ACS Sustainable Chem Eng 6(3):3502–3514
150.
Zurück zum Zitat Pasquier E et al (2021) Lignin nanoparticle nucleation and growth on cellulose and chitin nanofibers. Biomacromolecules 22(2):880–889 Pasquier E et al (2021) Lignin nanoparticle nucleation and growth on cellulose and chitin nanofibers. Biomacromolecules 22(2):880–889
151.
Zurück zum Zitat Farooq M et al (2019) Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromolecules, 20(2):693–704 Farooq M et al (2019) Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles. Biomacromolecules, 20(2):693–704
152.
Zurück zum Zitat Zhang Y et al (2019) From biomass to nanomaterials: a green procedure for preparation of holistic bamboo multifunctional nanocomposites based on formic acid rapid fractionation. ACS Sustain Chem Eng 7(7):6592–6600 Zhang Y et al (2019) From biomass to nanomaterials: a green procedure for preparation of holistic bamboo multifunctional nanocomposites based on formic acid rapid fractionation. ACS Sustain Chem Eng 7(7):6592–6600
153.
Zurück zum Zitat Juikar SJ, Vigneshwaran N (2017) Microbial production of coconut fiber nanolignin for application onto cotton and linen fabrics to impart multifunctional properties. Surfaces Interfaces 9:147–153CrossRef Juikar SJ, Vigneshwaran N (2017) Microbial production of coconut fiber nanolignin for application onto cotton and linen fabrics to impart multifunctional properties. Surfaces Interfaces 9:147–153CrossRef
154.
Zurück zum Zitat S S et al (2023) Influence of reaction conditions on synthesis and applications of lignin nanoparticles derived from agricultural wastes. Environ Technol Innov 31:103163, 1 ago 2023 S S et al (2023) Influence of reaction conditions on synthesis and applications of lignin nanoparticles derived from agricultural wastes. Environ Technol Innov 31:103163, 1 ago 2023
155.
Zurück zum Zitat Alqahtani MS et al (2019) Novel lignin nanoparticles for oral drug delivery. J Mater Chem B, 7(28):4461–4473 Alqahtani MS et al (2019) Novel lignin nanoparticles for oral drug delivery. J Mater Chem B, 7(28):4461–4473
156.
Zurück zum Zitat Dai L et al (2017) Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain Chem Eng 5(9):8241–8249, 5 set 2017 Dai L et al (2017) Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol. ACS Sustain Chem Eng 5(9):8241–8249, 5 set 2017
157.
Zurück zum Zitat Yang W et al (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12, 1 Jun 2016 Yang W et al (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12, 1 Jun 2016
158.
Zurück zum Zitat Ge Y, Li Z (2018) Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustain Chem Eng 6(5):7181–7192, 7 Maio 2018 Ge Y, Li Z (2018) Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustain Chem Eng 6(5):7181–7192, 7 Maio 2018
159.
Zurück zum Zitat LI X et al (2018) One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes. Nanomaterials 8(3), 1 Mar 2018 LI X et al (2018) One-step fabrication of dual responsive lignin coated Fe3O4 nanoparticles for efficient removal of cationic and anionic dyes. Nanomaterials 8(3), 1 Mar 2018
160.
Zurück zum Zitat Wang B et al (2019) Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustain Chem Eng 7(2):2658–2666, 22 Jan 2019b. Wang B et al (2019) Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens. ACS Sustain Chem Eng 7(2):2658–2666, 22 Jan 2019b.
161.
Zurück zum Zitat Norizan MN et al (2022) Nanocellulose-based nanocomposites for sustainable applications: a review. NanomaterialsMDPI, 1 Out 2022 Norizan MN et al (2022) Nanocellulose-based nanocomposites for sustainable applications: a review. NanomaterialsMDPI, 1 Out 2022
162.
Zurück zum Zitat Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellu 24(3):1171–1197, 20 Mar 2017 Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellu 24(3):1171–1197, 20 Mar 2017
163.
Zurück zum Zitat Wang J et al (2022) Source of nanocellulose and its application in nanocomposite packaging material: a review. NanomaterialsMDPI, 1 Set 2022 Wang J et al (2022) Source of nanocellulose and its application in nanocomposite packaging material: a review. NanomaterialsMDPI, 1 Set 2022
164.
Zurück zum Zitat Tanpichai S (2022) Recent development of plant-derived nanocellulose in polymer nanocomposite foams and multifunctional applications: a mini-review. Express Polym Lett 16(1):52–74, 1 Jan 2022 Tanpichai S (2022) Recent development of plant-derived nanocellulose in polymer nanocomposite foams and multifunctional applications: a mini-review. Express Polym Lett 16(1):52–74, 1 Jan 2022
165.
Zurück zum Zitat Borkotoky SS, Dhar P, Katiyar V (2018) Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior. Int J Biol Macromol 106:433–446, 1 Jan 2018 Borkotoky SS, Dhar P, Katiyar V (2018) Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior. Int J Biol Macromol 106:433–446, 1 Jan 2018
166.
Zurück zum Zitat Tran VH et al (2020) Influence of cellulose nanocrystal on the cryogenic mechanical behavior and thermal conductivity of polyurethane composite. J Polym Environ 28(4):1169–1179, 11 Abr 2020 Tran VH et al (2020) Influence of cellulose nanocrystal on the cryogenic mechanical behavior and thermal conductivity of polyurethane composite. J Polym Environ 28(4):1169–1179, 11 Abr 2020
167.
Zurück zum Zitat Zhou X et al (2019) Tannin-furanic resin foam reinforced with cellulose nanofibers (CNF). Ind Crops Prod 134:107–112, 1 ago 2019 Zhou X et al (2019) Tannin-furanic resin foam reinforced with cellulose nanofibers (CNF). Ind Crops Prod 134:107–112, 1 ago 2019
168.
Zurück zum Zitat Liu Y et al (2022) Application of lignin and lignin-based composites in different tissue engineering fields. Int J Biological Macromol, Elsevier B.V., 1 Dec 2022 Liu Y et al (2022) Application of lignin and lignin-based composites in different tissue engineering fields. Int J Biological Macromol, Elsevier B.V., 1 Dec 2022
169.
Zurück zum Zitat Balasubramaniam B et al (2021) Antibacterial and antiviral functional materials: chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol Transl Sci 4(1):8–54, 12 Feb 2021 Balasubramaniam B et al (2021) Antibacterial and antiviral functional materials: chemistry and biological activity toward tackling COVID-19-like pandemics. ACS Pharmacol Transl Sci 4(1):8–54, 12 Feb 2021
170.
Zurück zum Zitat Guo B, Ma PX (2018) Conducting polymers for tissue engineering. Biomacromolecules 19(6):1764–1782, 11 Jun 2018 Guo B, Ma PX (2018) Conducting polymers for tissue engineering. Biomacromolecules 19(6):1764–1782, 11 Jun 2018
171.
Zurück zum Zitat Liang R et al (2020) Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 230, 1 Feb 2020 Liang R et al (2020) Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 230, 1 Feb 2020
Metadaten
Titel
Cellulose and Lignin Nanoparticles in the Development of New Sustainable Applications
verfasst von
Braz S. Marotti
Valdeir Arantes
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-51601-6_9