Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 4/2007

01.11.2007 | Original Paper

Conceptual design of carbon nanotube processes

verfasst von: Adedeji E. Agboola, Ralph W. Pike, T. A. Hertwig, Helen H. Lou

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 4/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanotubes, discovered in 1991, are a new form of pure carbon that is perfectly straight tubules with diameter in nanometers, length in microns. The conceptual designs of two processes are described for the industrial-scale production of carbon nanotubes that are based on available laboratory synthesis techniques and purification methods. Two laboratory-scale catalytic chemical vapor deposition reactors were selected for the conceptual design. One (CNT-PFR process) used the high-pressure carbon monoxide disproportionation reaction over iron catalytic particle clusters (HiPCO reactor), and the other (CNT-FBR process) used catalytic disproportionation of carbon monoxide over a silica supported cobalt–molybdenum catalyst (CoMoCAT reactor). Purification of the carbon nanotube product used a multi-step approach: oxidation, acid treatment, filtration and drying. Profitability analysis showed that both process designs were economically feasible. For the CNT-PFR process, the net present value, based on a minimum attractive rate of return of 25% and an economic life of 10 years, was $609 million, the rate of return was 37.4% and the economic price was $38 per kg of carbon nanotube. For the CNT-FBR process, the net present value was $753 million, rate of return was 48.2% and the economic price was $25 per kg of carbon nanotube. The economic price for these processes is an order of magnitude less than the prevalent market price of carbon nanotubes and is comparable to the price of carbon fibers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agboola (2005) Development and model formulation of scalable carbon nanotube processes: HiPCO and CoMoCAT process models, M.S. thesis, Louisiana State University, Baton Rouge Agboola (2005) Development and model formulation of scalable carbon nanotube processes: HiPCO and CoMoCAT process models, M.S. thesis, Louisiana State University, Baton Rouge
Zurück zum Zitat Ajayan PM (2000) Carbon nanotubes. Handbook Nanostruct Mat Nanotechnol 5:375–403 Ajayan PM (2000) Carbon nanotubes. Handbook Nanostruct Mat Nanotechnol 5:375–403
Zurück zum Zitat Andrews R, Jacques D, Qian D, Rantell T (2002) Multi-wall carbon nanotubes: synthesis and application. Acc Chem Res 35:1008–1017CrossRef Andrews R, Jacques D, Qian D, Rantell T (2002) Multi-wall carbon nanotubes: synthesis and application. Acc Chem Res 35:1008–1017CrossRef
Zurück zum Zitat Bandow S, Rao AM, Williams KA Thess A, Smalley RE, Eklund PC (1997) Purification of single-wall carbon nanotubes by microfiltration. J Phys Chem B 101:8839–8842CrossRef Bandow S, Rao AM, Williams KA Thess A, Smalley RE, Eklund PC (1997) Purification of single-wall carbon nanotubes by microfiltration. J Phys Chem B 101:8839–8842CrossRef
Zurück zum Zitat Bronikowski MJ, Willis PA, Colbert TD, Smith KA Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPCO process: a parametric study. J Vacuum Sci Technol A 19(4):1800–1805CrossRef Bronikowski MJ, Willis PA, Colbert TD, Smith KA Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPCO process: a parametric study. J Vacuum Sci Technol A 19(4):1800–1805CrossRef
Zurück zum Zitat Brumby HA, Verhelst MP (2005) Recycling of GTL catalysts, ptqcatalysis. Pet Technol Q Rev p 15 Brumby HA, Verhelst MP (2005) Recycling of GTL catalysts, ptqcatalysis. Pet Technol Q Rev p 15
Zurück zum Zitat Chemical Engineering (2005) Chemical engineering product cost index. Chem Eng 2005 Chemical Engineering (2005) Chemical engineering product cost index. Chem Eng 2005
Zurück zum Zitat Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH (2001a) Purification and characterization of single-wall carbon nanotubes. J Phys Chem B 105:1157–1161CrossRef Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH (2001a) Purification and characterization of single-wall carbon nanotubes. J Phys Chem B 105:1157–1161CrossRef
Zurück zum Zitat Chiang IW, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Smalley RE, Margrave JL, Hauge RH (2001b) Purification and characterization of single-wall carbon nanotubes obtained from the gas-phase decomposition of CO (HiPCO). J Phys Chem B 105:8297–8301CrossRef Chiang IW, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Smalley RE, Margrave JL, Hauge RH (2001b) Purification and characterization of single-wall carbon nanotubes obtained from the gas-phase decomposition of CO (HiPCO). J Phys Chem B 105:8297–8301CrossRef
Zurück zum Zitat Corrias M et al. (2003) Carbon nanotubes produced in a fluidized bed catalytic CVD: first approach of the process. Chem Eng Sci 58:4475–4482CrossRef Corrias M et al. (2003) Carbon nanotubes produced in a fluidized bed catalytic CVD: first approach of the process. Chem Eng Sci 58:4475–4482CrossRef
Zurück zum Zitat Dateo CE, Gokcen T, Meyyappan M (2002) Modeling of the HiPCO process for carbon nanotube production 1: chemical kinetics. J Nanosci Nanotechnol 2(5):523–534CrossRef Dateo CE, Gokcen T, Meyyappan M (2002) Modeling of the HiPCO process for carbon nanotube production 1: chemical kinetics. J Nanosci Nanotechnol 2(5):523–534CrossRef
Zurück zum Zitat Davis VA (2005) Carbon nanotechnology laboratory, Chemical Engineering Department, Rice University, Private Communication, January, 2005 Davis VA (2005) Carbon nanotechnology laboratory, Chemical Engineering Department, Rice University, Private Communication, January, 2005
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotube. National Academy, Washington Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotube. National Academy, Washington
Zurück zum Zitat Felder RM, Rousseau RW (2000) Elementary principles of chemical processes. 3rd edn, Wiley, New York Felder RM, Rousseau RW (2000) Elementary principles of chemical processes. 3rd edn, Wiley, New York
Zurück zum Zitat Georgakilas V, Voulgaris D, Vasquez E, Prato M, Guldi DM, Kukovecz A, Kuzmany H (2002) Purification of HiPCO carbon nanotubes via organic functionalization. J Am Chem Soc 124:14318–14319CrossRef Georgakilas V, Voulgaris D, Vasquez E, Prato M, Guldi DM, Kukovecz A, Kuzmany H (2002) Purification of HiPCO carbon nanotubes via organic functionalization. J Am Chem Soc 124:14318–14319CrossRef
Zurück zum Zitat Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243:49–54CrossRef Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243:49–54CrossRef
Zurück zum Zitat Han HJ, Yoo J (2002) Low temperature synthesis of carbon nanotubes by thermal chemical vapor deposition using Co-catalyst. J Korean Phys Soc 39:S116–S119 Han HJ, Yoo J (2002) Low temperature synthesis of carbon nanotubes by thermal chemical vapor deposition using Co-catalyst. J Korean Phys Soc 39:S116–S119
Zurück zum Zitat Harutyunyan AR, Pradhan BK, Chang J, Chen G, Eklund PC (2002) Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J Phys Chem B 106:8671–8675CrossRef Harutyunyan AR, Pradhan BK, Chang J, Chen G, Eklund PC (2002) Purification of single-wall carbon nanotubes by selective microwave heating of catalyst particles. J Phys Chem B 106:8671–8675CrossRef
Zurück zum Zitat Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Riga J, Lucas A (1996) Catalytic synthesis and purification of carbon nanotubes. Sync Metals 77:31–34CrossRef Hernadi K, Fonseca A, Nagy JB, Bernaerts D, Riga J, Lucas A (1996) Catalytic synthesis and purification of carbon nanotubes. Sync Metals 77:31–34CrossRef
Zurück zum Zitat Hou PX, Bai S, Yang QH, Liu C, Cheng HM (2002) Multi-step purification of carbon nanotubes. Carbon 40:81–85CrossRef Hou PX, Bai S, Yang QH, Liu C, Cheng HM (2002) Multi-step purification of carbon nanotubes. Carbon 40:81–85CrossRef
Zurück zum Zitat Iijima S, Ajayan PM, Ichiashi T (1992) Growth model for carbon nanotubes. Phys Rev Lett 69(21):3100–3103CrossRef Iijima S, Ajayan PM, Ichiashi T (1992) Growth model for carbon nanotubes. Phys Rev Lett 69(21):3100–3103CrossRef
Zurück zum Zitat Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Denlard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758CrossRef Journet C, Maser WK, Bernier P, Loiseau A, Lamy de la Chapelle M, Lefrant S, Denlard P, Lee R, Fischer JE (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758CrossRef
Zurück zum Zitat Lee SJ, Baik HK, Yoo J, Han JH (2002) Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique. Diamond Relat Mat 11:914–917CrossRef Lee SJ, Baik HK, Yoo J, Han JH (2002) Large scale synthesis of carbon nanotubes by plasma rotating arc discharge technique. Diamond Relat Mat 11:914–917CrossRef
Zurück zum Zitat Li M, Hu Z, Wang X, Wu Q, Chen Y, Tian Y (2004) Low temperature synthesis of carbon nanotubes using corona discharge plasma at atmospheric pressure. Diamond Relat Mat 13:111–115CrossRef Li M, Hu Z, Wang X, Wu Q, Chen Y, Tian Y (2004) Low temperature synthesis of carbon nanotubes using corona discharge plasma at atmospheric pressure. Diamond Relat Mat 13:111–115CrossRef
Zurück zum Zitat Liu X, Huang B, Coville NJ (2002) The influence of synthesis parameters on the production of multi-walled carbon nanotubes by the ferrocene catalyzed pyrolysis of toluene. Fullerenes Nanotubes Nanostruct 10(4):339–352CrossRef Liu X, Huang B, Coville NJ (2002) The influence of synthesis parameters on the production of multi-walled carbon nanotubes by the ferrocene catalyzed pyrolysis of toluene. Fullerenes Nanotubes Nanostruct 10(4):339–352CrossRef
Zurück zum Zitat Lyu SC, Liu BC, Lee SH, Park CY, Kang HK, Yang CW, Lee CJ (2004) Large-scale synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of ethylene. J Phys Chem B 108:1613–1616CrossRef Lyu SC, Liu BC, Lee SH, Park CY, Kang HK, Yang CW, Lee CJ (2004) Large-scale synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of ethylene. J Phys Chem B 108:1613–1616CrossRef
Zurück zum Zitat Mauron Ph, Emmenegger Ch, Sudan P, Wenger P, Rentsch S, Zuttel A (2003) Fluidized-bed CVD synthesis of carbon nanotubes on Fe2O3/MgO. Diamond Relat Mat 12:780–785CrossRef Mauron Ph, Emmenegger Ch, Sudan P, Wenger P, Rentsch S, Zuttel A (2003) Fluidized-bed CVD synthesis of carbon nanotubes on Fe2O3/MgO. Diamond Relat Mat 12:780–785CrossRef
Zurück zum Zitat McBride BJ, Zehe M, Gordon S (2002) NASA Glenn coefficients for calculating thermodynamic properties, NASA/TP-2002, 211556 McBride BJ, Zehe M, Gordon S (2002) NASA Glenn coefficients for calculating thermodynamic properties, NASA/TP-2002, 211556
Zurück zum Zitat Meyyappan M (2004) Growth: CVD and PECVD. Carbon nanotubes: science and applications. CRC Press, Boca Raton, pp 99–116 Meyyappan M (2004) Growth: CVD and PECVD. Carbon nanotubes: science and applications. CRC Press, Boca Raton, pp 99–116
Zurück zum Zitat Meyyappan W, Srivasta D (2003) Handbook of nanoscience. Eng Technol 18:18-1–18-26 Meyyappan W, Srivasta D (2003) Handbook of nanoscience. Eng Technol 18:18-1–18-26
Zurück zum Zitat Moravsky AP, Wexler EU, Loutfy RO (2005) Growth of carbon nanotubes by arc discharge and laser ablation. Carbon nanotubes: science and applications 65–98 Nikolaev, 2004 Moravsky AP, Wexler EU, Loutfy RO (2005) Growth of carbon nanotubes by arc discharge and laser ablation. Carbon nanotubes: science and applications 65–98 Nikolaev, 2004
Zurück zum Zitat Nikolaev P (2004) Gas-phase production of single wall carbon nanotubes from carbon monoxide: A review of the HiPCO process. J Nanosci Technol 4(4):307–316CrossRefMathSciNet Nikolaev P (2004) Gas-phase production of single wall carbon nanotubes from carbon monoxide: A review of the HiPCO process. J Nanosci Technol 4(4):307–316CrossRefMathSciNet
Zurück zum Zitat Niyogi S, Hu H, Hamon MA, Bhowmik P, Zhao B, Rozenzhak SM, Chen J, Itkis ME, Meier M S, Haddon RC (2001) Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs). J Am Chem Soc 123:733–734CrossRef Niyogi S, Hu H, Hamon MA, Bhowmik P, Zhao B, Rozenzhak SM, Chen J, Itkis ME, Meier M S, Haddon RC (2001) Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs). J Am Chem Soc 123:733–734CrossRef
Zurück zum Zitat Park YS, Choi YC, Kim KS, Chung DC, Bae DJ, An KH, Lim SC, Zhu XY, Lee YH (2001) High yield purification of multi-walled carbon nanotubes by selective oxidation during thermal annealing. Carbon 39:655–661CrossRef Park YS, Choi YC, Kim KS, Chung DC, Bae DJ, An KH, Lim SC, Zhu XY, Lee YH (2001) High yield purification of multi-walled carbon nanotubes by selective oxidation during thermal annealing. Carbon 39:655–661CrossRef
Zurück zum Zitat Perez-Cabero M, Rodriguez-Ramos I, Guerrero-Ruiz A (2003) Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor. J Catal 215:305–316CrossRef Perez-Cabero M, Rodriguez-Ramos I, Guerrero-Ruiz A (2003) Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor. J Catal 215:305–316CrossRef
Zurück zum Zitat Pisan C, Chavadej S, Kitiyana B, Scamehorn JF, Resasco DE (2004) Separation of single-wall carbon nanotubes from silica by froth flotation technique. AIChE Annual Meeting, Indianapolis Pisan C, Chavadej S, Kitiyana B, Scamehorn JF, Resasco DE (2004) Separation of single-wall carbon nanotubes from silica by froth flotation technique. AIChE Annual Meeting, Indianapolis
Zurück zum Zitat Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna A (2001) A scalable process for production of single-walled carbon nanotubes by catalytic disproportionation of CO on a solid catalyst. J Nanopart Res 00:1–6 Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna A (2001) A scalable process for production of single-walled carbon nanotubes by catalytic disproportionation of CO on a solid catalyst. J Nanopart Res 00:1–6
Zurück zum Zitat Scott CD, Povitsky A, Dateo C, Willis PA, Smalley RE (2003) Iron catalyst chemistry in modeling a high-pressure carbon monoxide reactor. J Nanosci Nanotechnol 3:63–73CrossRef Scott CD, Povitsky A, Dateo C, Willis PA, Smalley RE (2003) Iron catalyst chemistry in modeling a high-pressure carbon monoxide reactor. J Nanosci Nanotechnol 3:63–73CrossRef
Zurück zum Zitat Shelimov KB, Esenaliev RO, Rinzler AG, Huffman CB, Smalley RE (1998) Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 282:429–434CrossRef Shelimov KB, Esenaliev RO, Rinzler AG, Huffman CB, Smalley RE (1998) Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem Phys Lett 282:429–434CrossRef
Zurück zum Zitat Terrones M (2003) Science and technology of the twenty- first century: synthesis, properties and applications of carbon nanotubes. Ann Rev Mat Res 33:419–509CrossRef Terrones M (2003) Science and technology of the twenty- first century: synthesis, properties and applications of carbon nanotubes. Ann Rev Mat Res 33:419–509CrossRef
Zurück zum Zitat Thien-Nga L, Hernadi K, Ljubovic E, Garaj S, Forro L (2002) Mechanical purification of single-walled carbon nanotube bundles from catalytic particles. Nano Lett 2(12):1349–1352CrossRef Thien-Nga L, Hernadi K, Ljubovic E, Garaj S, Forro L (2002) Mechanical purification of single-walled carbon nanotube bundles from catalytic particles. Nano Lett 2(12):1349–1352CrossRef
Zurück zum Zitat Turton R, Bailie RC, Whiting WB, Shaeiwitz JA (1998) Analysis, synthesis and design of chemical processes. 2nd edn, Prentice-Hall, New York Turton R, Bailie RC, Whiting WB, Shaeiwitz JA (1998) Analysis, synthesis and design of chemical processes. 2nd edn, Prentice-Hall, New York
Zurück zum Zitat Xu A, Pike RW, Indala S, Knopf FC, Yaws CL, Hopper JR (2005) Development and integration of new processes consuming carbon dioxide in multi-plant chemical complexes. Clean Technol Environ Policy, vol 7(2) pp 97–115 Xu A, Pike RW, Indala S, Knopf FC, Yaws CL, Hopper JR (2005) Development and integration of new processes consuming carbon dioxide in multi-plant chemical complexes. Clean Technol Environ Policy, vol 7(2) pp 97–115
Metadaten
Titel
Conceptual design of carbon nanotube processes
verfasst von
Adedeji E. Agboola
Ralph W. Pike
T. A. Hertwig
Helen H. Lou
Publikationsdatum
01.11.2007
Verlag
Springer-Verlag
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 4/2007
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-006-0083-2

Weitere Artikel der Ausgabe 4/2007

Clean Technologies and Environmental Policy 4/2007 Zur Ausgabe

Webwatch

Webwatch