Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 5/2023

29.06.2023 | ORIGINAL ARTICLE

Conversion of thermocol waste into fuel oil over nickel oxide: kinetics and fuel properties of the oil

verfasst von: Jan Nisar, Gul e Hina, Ghulam Ali, Ali Ahmad, Afzal Shah, Zahoor Hussain Farooqi, Tanveer Hussain Bukhari

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 5/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermocol which is made of polystyrene is used for different purposes including insulation and packaging. After use, it is thrown away as waste, and hence contaminates the environment. Therefore, the present study is focused on conversion of thermocol into fuel oil using nickel oxide as catalyst. Thermogravimetry and a pyrolysis chamber were used to pyrolyze thermocol waste both in presence and absence of catalyst. In the pyrolysis chamber, the highest oil yield was obtained at 370 °C, 5% catalyst, and 70 min reaction time. GC–MS was performed of the obtained oil and it was observed that the quantity of some fuel-range hydrocarbons such as ethyl benzene had increased to 35%. Additionally, TG analysis of the sample with/without catalyst was carried out at different heating rates and the resultant information was used for calculating kinetic parameters applying Coats Redfern (CR) and Ozawa Flynn Wall (OFW) models. The use of catalyst reduced the activation energy and enhanced the quality of oil. The oil produced from thermocol waste in the presence of a catalyst was compared to diesel, gasoline, and kerosene oil and found as a viable fossil fuel alternative.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cole M et al (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597CrossRef Cole M et al (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62(12):2588–2597CrossRef
2.
Zurück zum Zitat Bockhorn H, Hornung A, Hornung U (1998) Stepwise pyrolysis for raw material recovery from plastic waste. J Anal Appl Pyrol 46(1):1–13CrossRef Bockhorn H, Hornung A, Hornung U (1998) Stepwise pyrolysis for raw material recovery from plastic waste. J Anal Appl Pyrol 46(1):1–13CrossRef
3.
Zurück zum Zitat Aguado J, Serrano D, Escola J (2008) Fuels from waste plastics by thermal and catalytic processes: a review. Ind Eng Chem Res 47(21):7982–7992CrossRef Aguado J, Serrano D, Escola J (2008) Fuels from waste plastics by thermal and catalytic processes: a review. Ind Eng Chem Res 47(21):7982–7992CrossRef
4.
Zurück zum Zitat Basha MH, Sulaiman SA, Uemura Y (2020) Co-gasification of palm kernel shell and polystyrene plastic: effect of different operating conditions. J Energy Inst 93(3):1045–1052CrossRef Basha MH, Sulaiman SA, Uemura Y (2020) Co-gasification of palm kernel shell and polystyrene plastic: effect of different operating conditions. J Energy Inst 93(3):1045–1052CrossRef
5.
Zurück zum Zitat Supramono D, Listiono EV, Nasikin M (2019) Effect of hydrogen gas pressure on biofuel characteristics in hydrogenation reaction of non-oxygenated fraction of bio-oil. In: AIP conference proceedings. AIP Publishing LLC Supramono D, Listiono EV, Nasikin M (2019) Effect of hydrogen gas pressure on biofuel characteristics in hydrogenation reaction of non-oxygenated fraction of bio-oil. In: AIP conference proceedings. AIP Publishing LLC
6.
Zurück zum Zitat Paço A et al (2019) Biotechnological tools for the effective management of plastics in the environment. Crit Rev Environ Sci Technol 49(5):410–441CrossRef Paço A et al (2019) Biotechnological tools for the effective management of plastics in the environment. Crit Rev Environ Sci Technol 49(5):410–441CrossRef
7.
Zurück zum Zitat Ali MF, Siddiqui MN (2005) Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue. J Anal Appl Pyrol 74(1–2):282–289CrossRef Ali MF, Siddiqui MN (2005) Thermal and catalytic decomposition behavior of PVC mixed plastic waste with petroleum residue. J Anal Appl Pyrol 74(1–2):282–289CrossRef
8.
Zurück zum Zitat Filip M et al (2013) Investigation of thermal and catalytic degradation of polystyrene waste into styrene monomer over natural volcanic tuff and Florisil catalysts. Open Chem 11(5):725–735CrossRef Filip M et al (2013) Investigation of thermal and catalytic degradation of polystyrene waste into styrene monomer over natural volcanic tuff and Florisil catalysts. Open Chem 11(5):725–735CrossRef
9.
Zurück zum Zitat Hussain Z et al (2020) White cement and burnt brick powder catalyzed pyrolysis of waste polystyrene for production of liquid and gaseous fuels. Asia-Pac J Chem Eng 15(1):e2391CrossRef Hussain Z et al (2020) White cement and burnt brick powder catalyzed pyrolysis of waste polystyrene for production of liquid and gaseous fuels. Asia-Pac J Chem Eng 15(1):e2391CrossRef
10.
Zurück zum Zitat Chumbhale VR et al (2004) Catalytic degradation of expandable polystyrene waste (EPSW) over mordenite and modified mordenites. J Mol Catal A: Chem 222(1–2):133–141CrossRef Chumbhale VR et al (2004) Catalytic degradation of expandable polystyrene waste (EPSW) over mordenite and modified mordenites. J Mol Catal A: Chem 222(1–2):133–141CrossRef
11.
Zurück zum Zitat Pakiya Pradeep A, Gowthaman S (2022) Combustion and emission characteristics of diesel engine fuelled with waste plastic oil—a review. Int J Ambient Energy 43(1):1269–1287 Pakiya Pradeep A, Gowthaman S (2022) Combustion and emission characteristics of diesel engine fuelled with waste plastic oil—a review. Int J Ambient Energy 43(1):1269–1287
12.
Zurück zum Zitat Pradeep AP, Gowthaman S (2022) Extraction of transportation grade fuels from waste LDPE packaging polymers using catalytic pyrolysis. Fuel 323:124416CrossRef Pradeep AP, Gowthaman S (2022) Extraction of transportation grade fuels from waste LDPE packaging polymers using catalytic pyrolysis. Fuel 323:124416CrossRef
13.
Zurück zum Zitat Lee T et al (2020) Catalytic pyrolysis of polystyrene over steel slag under CO2 environment. J Hazard Mater 395:122576CrossRef Lee T et al (2020) Catalytic pyrolysis of polystyrene over steel slag under CO2 environment. J Hazard Mater 395:122576CrossRef
14.
Zurück zum Zitat Wei T-T et al (2010) Chemical recycling of post-consumer polymer waste over fluidizing cracking catalysts for producing chemicals and hydrocarbon fuels. Resour Conserv Recycl 54(11):952–961CrossRef Wei T-T et al (2010) Chemical recycling of post-consumer polymer waste over fluidizing cracking catalysts for producing chemicals and hydrocarbon fuels. Resour Conserv Recycl 54(11):952–961CrossRef
15.
Zurück zum Zitat Filip MR, Pop A, Rusu T (2011) GS-MS and FTIR studies of the liquid products obtained by thermal and catalytic degradation of polystyrene waste. Stud Univ Babes Bolyai Chem 56(4):1 Filip MR, Pop A, Rusu T (2011) GS-MS and FTIR studies of the liquid products obtained by thermal and catalytic degradation of polystyrene waste. Stud Univ Babes Bolyai Chem 56(4):1
16.
Zurück zum Zitat Parasuram B, Karthikeyan S, Sundram S (2013) Catalytic pyrolysis of polystyrene waste using bentonite as a catalyst. J Environ Nanotechnol 2:97–100CrossRef Parasuram B, Karthikeyan S, Sundram S (2013) Catalytic pyrolysis of polystyrene waste using bentonite as a catalyst. J Environ Nanotechnol 2:97–100CrossRef
17.
Zurück zum Zitat Nisar J et al (2020) Pyrolysis of polystyrene waste for recovery of combustible hydrocarbons using copper oxide as catalyst. Waste Manag Res 38(11):1269–1277CrossRef Nisar J et al (2020) Pyrolysis of polystyrene waste for recovery of combustible hydrocarbons using copper oxide as catalyst. Waste Manag Res 38(11):1269–1277CrossRef
18.
Zurück zum Zitat Park K-B et al (2020) Two-stage pyrolysis of polystyrene: pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes. Appl Energy 259:114240CrossRef Park K-B et al (2020) Two-stage pyrolysis of polystyrene: pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes. Appl Energy 259:114240CrossRef
19.
Zurück zum Zitat Özsin G, Pütün AE (2018) Co-pyrolytic behaviors of biomass and polystyrene: kinetics, thermodynamics and evolved gas analysis. Korean J Chem Eng 35(2):428–437CrossRef Özsin G, Pütün AE (2018) Co-pyrolytic behaviors of biomass and polystyrene: kinetics, thermodynamics and evolved gas analysis. Korean J Chem Eng 35(2):428–437CrossRef
20.
Zurück zum Zitat Nisar J et al (2022) Pyrolysis of juice-squeezed grapefruit waste: effect of nickel oxide on kinetics and bio-oil yield. Int J Environ Sci Technol 2022:1–12 Nisar J et al (2022) Pyrolysis of juice-squeezed grapefruit waste: effect of nickel oxide on kinetics and bio-oil yield. Int J Environ Sci Technol 2022:1–12
21.
Zurück zum Zitat Ali G et al (2020) Thermo-catalytic decomposition of polystyrene waste: Comparative analysis using different kinetic models. Waste Manag Res 38(2):202–212CrossRef Ali G et al (2020) Thermo-catalytic decomposition of polystyrene waste: Comparative analysis using different kinetic models. Waste Manag Res 38(2):202–212CrossRef
22.
Zurück zum Zitat Nisar J et al (2020) Pyrolysis of waste tire rubber: a comparative kinetic study using different models. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, p 1–11 Nisar J et al (2020) Pyrolysis of waste tire rubber: a comparative kinetic study using different models. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, p 1–11
23.
Zurück zum Zitat Nisar J et al (2021) Cobalt-doped molecular sieve for efficient degradation of polypropylene into fuel oil: kinetics and fuel properties of the oil. Chem Eng Res Des 2021:1 Nisar J et al (2021) Cobalt-doped molecular sieve for efficient degradation of polypropylene into fuel oil: kinetics and fuel properties of the oil. Chem Eng Res Des 2021:1
24.
Zurück zum Zitat Vyazovkin S et al (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1):1–19CrossRef Vyazovkin S et al (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1):1–19CrossRef
25.
Zurück zum Zitat Nisar J et al (2021) Production of fuel oil and combustible gases from pyrolysis of polystyrene waste: kinetics and thermodynamics interpretation. Environ Technol Innov 24:101996CrossRef Nisar J et al (2021) Production of fuel oil and combustible gases from pyrolysis of polystyrene waste: kinetics and thermodynamics interpretation. Environ Technol Innov 24:101996CrossRef
26.
Zurück zum Zitat Nisar J et al (2022) Conversion of polypropylene waste into value-added products: a greener approach. Molecules 27(9):3015CrossRef Nisar J et al (2022) Conversion of polypropylene waste into value-added products: a greener approach. Molecules 27(9):3015CrossRef
27.
Zurück zum Zitat Nisar J et al (2022) Production of fuel oil from decomposition of polypropylene over Cu–Co modified molecular sieve-based catalyst. Chem Eng Res Des 2022:1 Nisar J et al (2022) Production of fuel oil from decomposition of polypropylene over Cu–Co modified molecular sieve-based catalyst. Chem Eng Res Des 2022:1
28.
Zurück zum Zitat Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand 70(6):487–523CrossRef Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand 70(6):487–523CrossRef
29.
Zurück zum Zitat Coats A, Redfern J-P (1965) Kinetic parameters from thermogravimetric data. II. J Polym Sci Part B Polym Lett 3(11):917–920 Coats A, Redfern J-P (1965) Kinetic parameters from thermogravimetric data. II. J Polym Sci Part B Polym Lett 3(11):917–920
30.
Zurück zum Zitat Coats AW, Redfern J (1964) Kinetic parameters from thermogravimetric data. Nature 201(4914):68–69CrossRef Coats AW, Redfern J (1964) Kinetic parameters from thermogravimetric data. Nature 201(4914):68–69CrossRef
31.
Zurück zum Zitat Ali G et al (2021) Production of liquid fuel from polystyrene waste: process optimization and characterization of pyrolyzates. In: Combustion science and technology, pp 1–14 Ali G et al (2021) Production of liquid fuel from polystyrene waste: process optimization and characterization of pyrolyzates. In: Combustion science and technology, pp 1–14
32.
Zurück zum Zitat Nisar J et al (2020) Pyrolysis of almond shells waste: effect of zinc oxide on kinetics and product distribution. In: Biomass conversion and biorefinery, p 1–13 Nisar J et al (2020) Pyrolysis of almond shells waste: effect of zinc oxide on kinetics and product distribution. In: Biomass conversion and biorefinery, p 1–13
33.
Zurück zum Zitat Ramesan M et al (2019) Nickel oxide@ polyindole/phenothiazine blend nanocomposites: preparation, characterization, thermal, electrical properties and gas sensing applications. J Mater Sci Mater Electron 30(14):13719–13728CrossRef Ramesan M et al (2019) Nickel oxide@ polyindole/phenothiazine blend nanocomposites: preparation, characterization, thermal, electrical properties and gas sensing applications. J Mater Sci Mater Electron 30(14):13719–13728CrossRef
34.
Zurück zum Zitat Qiao H et al (2009) Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J Nanomater 2009:1 Qiao H et al (2009) Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J Nanomater 2009:1
35.
Zurück zum Zitat Mateos D et al (2019) Synthesis of high purity nickel oxide by a modified sol–gel method. Ceram Int 45(9):11403–11407CrossRef Mateos D et al (2019) Synthesis of high purity nickel oxide by a modified sol–gel method. Ceram Int 45(9):11403–11407CrossRef
36.
Zurück zum Zitat Hajakbari F (2020) Characterization of nanocrystalline nickel oxide thin films prepared at different thermal oxidation temperatures. J Nanostruct Chem 10(1):97–103CrossRef Hajakbari F (2020) Characterization of nanocrystalline nickel oxide thin films prepared at different thermal oxidation temperatures. J Nanostruct Chem 10(1):97–103CrossRef
37.
Zurück zum Zitat Liu X et al (2018) Engineering mesoporous NiO with enriched electrophilic Ni3+ and O− toward efficient oxygen evolution. Catalysts 8(8):310CrossRef Liu X et al (2018) Engineering mesoporous NiO with enriched electrophilic Ni3+ and O toward efficient oxygen evolution. Catalysts 8(8):310CrossRef
38.
Zurück zum Zitat Xu X et al (2017) Mesoporous high surface area NiO synthesized with soft templates: remarkable for catalytic CH4 deep oxidation. Mol Catal 441:81–91CrossRef Xu X et al (2017) Mesoporous high surface area NiO synthesized with soft templates: remarkable for catalytic CH4 deep oxidation. Mol Catal 441:81–91CrossRef
39.
Zurück zum Zitat Zhang Z et al (1995) Chemical recycling of waste polystyrene into styrene over solid acids and bases. Ind Eng Chem Res 34(12):4514–4519CrossRef Zhang Z et al (1995) Chemical recycling of waste polystyrene into styrene over solid acids and bases. Ind Eng Chem Res 34(12):4514–4519CrossRef
40.
Zurück zum Zitat Nisar J et al (2019) Pyrolysis of expanded waste polystyrene: influence of nickel-doped copper oxide on kinetics, thermodynamics, and product distribution. Energy Fuels 33(12):12666–12678MathSciNetCrossRef Nisar J et al (2019) Pyrolysis of expanded waste polystyrene: influence of nickel-doped copper oxide on kinetics, thermodynamics, and product distribution. Energy Fuels 33(12):12666–12678MathSciNetCrossRef
41.
Zurück zum Zitat Lisa G et al (2003) Thermal behaviour of polystyrene, polysulfone and their substituted derivatives. Polym Degrad Stab 82(1):73–79CrossRef Lisa G et al (2003) Thermal behaviour of polystyrene, polysulfone and their substituted derivatives. Polym Degrad Stab 82(1):73–79CrossRef
42.
Zurück zum Zitat Brems A et al (2011) Thermogravimetric pyrolysis of waste polyethylene–terephthalate and polystyrene: a critical assessment of kinetics modelling. Resour Conserv Recycl 55(8):772–781CrossRef Brems A et al (2011) Thermogravimetric pyrolysis of waste polyethylene–terephthalate and polystyrene: a critical assessment of kinetics modelling. Resour Conserv Recycl 55(8):772–781CrossRef
43.
Zurück zum Zitat Miandad R et al (2017) Effect of plastic waste types on pyrolysis liquid oil. Int Biodeterior Biodegradation 119:239–252CrossRef Miandad R et al (2017) Effect of plastic waste types on pyrolysis liquid oil. Int Biodeterior Biodegradation 119:239–252CrossRef
44.
Zurück zum Zitat Nisar J et al (2019) Fuel production from waste polystyrene via pyrolysis: kinetics and products distribution. Waste Manag 88:236–247CrossRef Nisar J et al (2019) Fuel production from waste polystyrene via pyrolysis: kinetics and products distribution. Waste Manag 88:236–247CrossRef
45.
Zurück zum Zitat Verma A, Sharma S, Pramanik H (2021) Pyrolysis of waste expanded polystyrene and reduction of styrene via in-situ multiphase pyrolysis of product oil for the production of fuel range hydrocarbons. Waste Manag 120:330–339CrossRef Verma A, Sharma S, Pramanik H (2021) Pyrolysis of waste expanded polystyrene and reduction of styrene via in-situ multiphase pyrolysis of product oil for the production of fuel range hydrocarbons. Waste Manag 120:330–339CrossRef
46.
Zurück zum Zitat Fan S et al (2022) Microwave-assisted pyrolysis of polystyrene for aviation oil production. J Anal Appl Pyrol 162:105425CrossRef Fan S et al (2022) Microwave-assisted pyrolysis of polystyrene for aviation oil production. J Anal Appl Pyrol 162:105425CrossRef
47.
Zurück zum Zitat Amjad UES et al (2021) Diesel and gasoline like fuel production with minimum styrene content from catalytic pyrolysis of polystyrene. Environ Progress Sustain Energy 40(2):e13493 Amjad UES et al (2021) Diesel and gasoline like fuel production with minimum styrene content from catalytic pyrolysis of polystyrene. Environ Progress Sustain Energy 40(2):e13493
48.
Zurück zum Zitat ASTM (1979) Annual book of ASTM standard part 23, American Society of Testing Materials, Philadelphia, PA. Annual Book of ASTM Standard Part 23, American Society of Testing Materials, Philadelphia, PA ASTM (1979) Annual book of ASTM standard part 23, American Society of Testing Materials, Philadelphia, PA. Annual Book of ASTM Standard Part 23, American Society of Testing Materials, Philadelphia, PA
49.
Zurück zum Zitat IP (1993) Standards for petroleum and its products, part I, Institute of Petroleum. Standards for Petroleum and Its Products, Part I, Institute of Petroleum London IP (1993) Standards for petroleum and its products, part I, Institute of Petroleum. Standards for Petroleum and Its Products, Part I, Institute of Petroleum London
Metadaten
Titel
Conversion of thermocol waste into fuel oil over nickel oxide: kinetics and fuel properties of the oil
verfasst von
Jan Nisar
Gul e Hina
Ghulam Ali
Ali Ahmad
Afzal Shah
Zahoor Hussain Farooqi
Tanveer Hussain Bukhari
Publikationsdatum
29.06.2023
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 5/2023
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-023-01736-2

Weitere Artikel der Ausgabe 5/2023

Journal of Material Cycles and Waste Management 5/2023 Zur Ausgabe