Skip to main content
Erschienen in: Geotechnical and Geological Engineering 7/2022

17.03.2022 | Original Paper

Drag Load on End-Bearing Piles in Partially Saturated Collapsible Soil

verfasst von: Adel Hanna, Ibrahim Mashhour, Nhut Nguyen

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Collapsible soils are categorized as problematic soils, which display high shear strength when they are dry or at a low degree of saturation, and experience large and sudden deformation and lose of strength when inundated. End-bearing piles are often employed to penetrate these layers to transfer the structure load to a deeper stronger stratum. In the literature, reports can be found dealing with negative skin friction acting on pile’s shaft due to full inundation. However, the case of partial saturation has received little attention. This paper presents the results of an experimental investigation on an end-bearing pile resting on strong soil strata and surrounded with partially saturated collapsible soil. The objective of this paper is to evaluate the drag load acting on the pile’s shaft for a given collapse potential and degree of saturation. In this analysis, the soil matric suction plays an important role in predicting the drag load developed on the pile’s shaft during wetting. The experimental set-up was designed to measure the drag load acting on the pile’s shaft penetrating partially saturated collapsible soil, subjected to a degree of saturation of 25% up to 100%. The material used in this investigation was a laboratory prepared collapsible soil, consisting of a mixture of fine sand and kaolin clay at water content of 5%. Results showed that the drag load increases with the increase of the collapse potential, the degree of saturation, and the inundation pressure. Design procedure is provided to predict the drag load acting on a pile’s shaft subjected to these conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ASTM D5333–03 (2003). Standard test method for measurement of collapse potential of soils. ASTM Standard D5333–03. Annual Book of ASTM Standard, Philadelphia ASTM D5333–03 (2003). Standard test method for measurement of collapse potential of soils. ASTM Standard D5333–03. Annual Book of ASTM Standard, Philadelphia
Zurück zum Zitat ASTM D6836–02 (2008). Standard test methods for determination of the soil water characteristic curve for desorption using a hanging column, pressure extractor, chilled mirror hygrometer, and/or centrifuge. ASTM International, West Conshohocken, PA ASTM D6836–02 (2008). Standard test methods for determination of the soil water characteristic curve for desorption using a hanging column, pressure extractor, chilled mirror hygrometer, and/or centrifuge. ASTM International, West Conshohocken, PA
Zurück zum Zitat Ayadat T, Haanna AM (2007) Identification of collapsible soil using the fall cone apparatus. ASTM J Geotech Eng 30(4):312–323 Ayadat T, Haanna AM (2007) Identification of collapsible soil using the fall cone apparatus. ASTM J Geotech Eng 30(4):312–323
Zurück zum Zitat Chen ZH, Huang, XF, Qin, B, Fang XW, Guo, JF (2008). Negative skin friction for cast-in-place piles in thick collapsible loess. Unsaturated soils advances in geo-engineering. Taylor and Francis. p. 979–985 Chen ZH, Huang, XF, Qin, B, Fang XW, Guo, JF (2008). Negative skin friction for cast-in-place piles in thick collapsible loess. Unsaturated soils advances in geo-engineering. Taylor and Francis. p. 979–985
Zurück zum Zitat Clemence SP, Finbarr AO (1981) Design consideration for collapsible soils. J Geotech Eng ASCE 107(3):305–317 Clemence SP, Finbarr AO (1981) Design consideration for collapsible soils. J Geotech Eng ASCE 107(3):305–317
Zurück zum Zitat EI-Mossallamy YM, Hefny AM, Demerdash MA, Morsy MS (2013) Numerical analysis of negative skin friction on piles in soft clay. HBRC J 9(1):68–76CrossRef EI-Mossallamy YM, Hefny AM, Demerdash MA, Morsy MS (2013) Numerical analysis of negative skin friction on piles in soft clay. HBRC J 9(1):68–76CrossRef
Zurück zum Zitat El-Ehwany M, Houston SL (1990) Settlement and moisture movement in collapsible soils. J Geotech Eng ASCE 116(10):1521–1535CrossRef El-Ehwany M, Houston SL (1990) Settlement and moisture movement in collapsible soils. J Geotech Eng ASCE 116(10):1521–1535CrossRef
Zurück zum Zitat Elkady TY, Dafalla MA, Al-Mahbashi AM, Al-Shamrani M (2013) Evaluation of soil water characteristic curves of sand-clay mixtures. Int J GEOMATE 4(2):528–532 Elkady TY, Dafalla MA, Al-Mahbashi AM, Al-Shamrani M (2013) Evaluation of soil water characteristic curves of sand-clay mixtures. Int J GEOMATE 4(2):528–532
Zurück zum Zitat Fellenius B.H. (2014) “Piled foundation design as reflected in codes and standards”. In: Proceedings of the DFI-EFFC international conference on piling and deep foundations, Stockholm, May 21–23, pp. 1013–1030 Fellenius B.H. (2014) “Piled foundation design as reflected in codes and standards”. In: Proceedings of the DFI-EFFC international conference on piling and deep foundations, Stockholm, May 21–23, pp. 1013–1030
Zurück zum Zitat Haeri SM, Khosravi A, Garakani AA, Ghazizadeh S (2016) Effect of soil structure and disturbance on hydro-mechanical behavior of collapsible loessial soils. Int J Geomech 17(1):04016021CrossRef Haeri SM, Khosravi A, Garakani AA, Ghazizadeh S (2016) Effect of soil structure and disturbance on hydro-mechanical behavior of collapsible loessial soils. Int J Geomech 17(1):04016021CrossRef
Zurück zum Zitat Hanna AM, Soliman SF (2017) Experimental investigation on partially replaced and reinforced collapsible soils. J Geotech Geo-environmental Eng ASCE 143(11):1–12 Hanna AM, Soliman SF (2017) Experimental investigation on partially replaced and reinforced collapsible soils. J Geotech Geo-environmental Eng ASCE 143(11):1–12
Zurück zum Zitat Hanna AM, Sharif A (2006) Drag force on a single pile in clay subjected to surcharge loading. Int J Geomech ASCE 6(2):89–96CrossRef Hanna AM, Sharif A (2006) Drag force on a single pile in clay subjected to surcharge loading. Int J Geomech ASCE 6(2):89–96CrossRef
Zurück zum Zitat Hilf JW (1956) An investigation of pore-water pressure in compacted cohesive soils”. Ph.D. Thesis, Tech. Memo No. 654, U.S. Dept. of interior Bureau of Reclamation, Design and Construction Div., Denver, Colorado Hilf JW (1956) An investigation of pore-water pressure in compacted cohesive soils”. Ph.D. Thesis, Tech. Memo No. 654, U.S. Dept. of interior Bureau of Reclamation, Design and Construction Div., Denver, Colorado
Zurück zum Zitat Hou X, Vanapalli SK, Li T (2019) Wetting-induced collapse behavior associated with infiltration: a case study. Eng Geol 258:105146CrossRef Hou X, Vanapalli SK, Li T (2019) Wetting-induced collapse behavior associated with infiltration: a case study. Eng Geol 258:105146CrossRef
Zurück zum Zitat Jennings JE, Knight K (1975). A guide to construction on or with materials exhibiting additional settlement due to collapse of grain structure. In: proceedings of the 6th regional conference for Africa on soil mechanics and foundation engineering. p 99–105 Jennings JE, Knight K (1975). A guide to construction on or with materials exhibiting additional settlement due to collapse of grain structure. In: proceedings of the 6th regional conference for Africa on soil mechanics and foundation engineering. p 99–105
Zurück zum Zitat Kanyan Ma, Jiwen Z, Donghong W (2009) Negative skin friction of pile in self-weight collapse loess site. Geotech Eng Tech 4:167–166 Kanyan Ma, Jiwen Z, Donghong W (2009) Negative skin friction of pile in self-weight collapse loess site. Geotech Eng Tech 4:167–166
Zurück zum Zitat Lawton EC, Fragaszy RJ, Hetherington MD (1992) Review of wetting-induced collapse in compacted soil. J Geotech Eng 118(9):1376–1394CrossRef Lawton EC, Fragaszy RJ, Hetherington MD (1992) Review of wetting-induced collapse in compacted soil. J Geotech Eng 118(9):1376–1394CrossRef
Zurück zum Zitat Lee CJ, Bolton MD, Al-Tabaa A (2001). Recent findings on negative skin friction in piles and pile groups in consolidating ground. In: 5th international conference on deep foundation practice, Singapore, April, p 273–280 Lee CJ, Bolton MD, Al-Tabaa A (2001). Recent findings on negative skin friction in piles and pile groups in consolidating ground. In: 5th international conference on deep foundation practice, Singapore, April, p 273–280
Zurück zum Zitat Li P, Vanapalli S, Li T (2016) Review of collapse triggering mechanism of collapsible soils due to wetting. J Rock Mech Geotech Eng 8(2):256–274CrossRef Li P, Vanapalli S, Li T (2016) Review of collapse triggering mechanism of collapsible soils due to wetting. J Rock Mech Geotech Eng 8(2):256–274CrossRef
Zurück zum Zitat Mashhour I, Hanna A (2016) Drag load on end-bearing piles in collapsible soil due to inundation. Can Geotech J 53(12):2030–2038CrossRef Mashhour I, Hanna A (2016) Drag load on end-bearing piles in collapsible soil due to inundation. Can Geotech J 53(12):2030–2038CrossRef
Zurück zum Zitat Miller H, Djerbib Y, Jefferson IF, Smalley IJ (1998). Modeling the collapse of metastable loess soils. In: proceedings of the 3rd international conference on geo-computation, University of Bristol, United Kingdom p 17–19 Miller H, Djerbib Y, Jefferson IF, Smalley IJ (1998). Modeling the collapse of metastable loess soils. In: proceedings of the 3rd international conference on geo-computation, University of Bristol, United Kingdom p 17–19
Zurück zum Zitat Noor ST, Hanna A, Mashhour I (2013) Numerical modeling of piles in collapsible soil subjected to inundation. Int J Geomech 13(5):514–526CrossRef Noor ST, Hanna A, Mashhour I (2013) Numerical modeling of piles in collapsible soil subjected to inundation. Int J Geomech 13(5):514–526CrossRef
Zurück zum Zitat Sedran G, Stolle DFE, Horvath RG (2001) An investigation of scaling and dimensional analysis of axially loaded piles. Can Geotech J 38(3):530–541CrossRef Sedran G, Stolle DFE, Horvath RG (2001) An investigation of scaling and dimensional analysis of axially loaded piles. Can Geotech J 38(3):530–541CrossRef
Zurück zum Zitat Singhal S, Sharma RS, Phanikumar BR (2016) A laboratory study of collapse behavior of remolded loess under controlled wetting and flooding. Geomech Geoeng 11(2):159–163CrossRef Singhal S, Sharma RS, Phanikumar BR (2016) A laboratory study of collapse behavior of remolded loess under controlled wetting and flooding. Geomech Geoeng 11(2):159–163CrossRef
Metadaten
Titel
Drag Load on End-Bearing Piles in Partially Saturated Collapsible Soil
verfasst von
Adel Hanna
Ibrahim Mashhour
Nhut Nguyen
Publikationsdatum
17.03.2022
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 7/2022
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-022-02098-6

Weitere Artikel der Ausgabe 7/2022

Geotechnical and Geological Engineering 7/2022 Zur Ausgabe