Skip to main content

2024 | OriginalPaper | Buchkapitel

Durchflussunterstützte Synthese von Heterocyclen bei hohen Temperaturen

verfasst von : Ryan J. Sullivan, Stephen G. Newman

Erschienen in: Flow-Chemie für die Synthese von Heterocyclen

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Selektive und ertragreiche Umwandlungen an komplexen organischen Molekülen bei Temperaturen im Bereich von 200–450 °C durchzuführen, mag zunächst kontraintuitiv oder sogar unmöglich erscheinen. Mit kontinuierlichen Durchflusssystemen sind jedoch solche Bedingungen tatsächlich zugänglich und für nützliche Chemie verwendbar. Diese Übersicht hebt jüngste Bemühungen in der Heterocyclensynthese und -modifikation hervor, die durch Hochtemperatur (>200 °C)-Durchflusschemie ermöglicht wurden, wobei der Schwerpunkt auf der Darstellung der Vielfalt und synthetischen Nützlichkeit verschiedener Hochtemperaturtransformationen liegt. Der überprüfte Inhalt fällt natürlich in drei Kategorien: pericyclische Transformationen, Kondensationsreaktionen und Modifikation/Funktionalisierung von Heterocyclen. Verschiedene Mängel und Überlegungen, die bei der Planung von Hochtemperaturdurchflussreaktionen notwendig sind, wurden ebenfalls hervorgehoben, wo dies anwendbar ist.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Abhängig von der Funktionalisierung: 180 °C für Methylsilikonöle und 230 °C für Phenylmethylsilikonöle.
 
2
Sulfinert ist eine mit Siltek behandelte Edelstahlspule (d. h. mehrschichtige Silica-Beschichtung durch chemische Dampfabscheidung), die die Vorteile von Teflon-Beschichtungen oder Glas-/Quarzglas-Silicaspulen ohne die Temperaturbegrenzungen und Gasdurchlässigkeitsprobleme von Teflon und mit viel größerer Flexibilität und Temperaturstabilität als Glas- oder Quarzglas-Silicaspulen hat. Für weitere Informationen siehe www.​Restek.​com.
 
3
Die ionische Konstante (Kw) von scH2O ist stark druckabhängig und kann bei hohen Drücken größer sein als die von unterkritischem Wasser, d. h. sowohl [H3O+] als auch [OH] können bei hohen Drücken in scH2O höher sein.
 
4
Der kritische Punkt von Wasser liegt bei 374 °C, 218 bar. Bei 400 °C, 150 bar, liegt das Wasser als überhitzter Dampf vor, aber noch nicht als überkritisches Fluid.
 
5
Wenn die Temperatur konstant bei 400 °C gehalten wird, ist Kw minimal, wenn P = 250 bar.
 
Literatur
1.
Zurück zum Zitat Rudnick LR, Bartz WJ (2013) Comparison of synthetic, mineral oil, and bio-based lubricant fluids. In: Rudnick LR (Hrsg) Synthetics, mineral oils, and bio-based lubricants, 2nd Aufl. CRC Press, Boca Raton, S 347–366 Rudnick LR, Bartz WJ (2013) Comparison of synthetic, mineral oil, and bio-based lubricant fluids. In: Rudnick LR (Hrsg) Synthetics, mineral oils, and bio-based lubricants, 2nd Aufl. CRC Press, Boca Raton, S 347–366
2.
Zurück zum Zitat Atkins P, De Paula J (2010) Atkin’s physical chemistry, 9th Aufl. Oxford University Press, Oxford Atkins P, De Paula J (2010) Atkin’s physical chemistry, 9th Aufl. Oxford University Press, Oxford
3.
Zurück zum Zitat Kappe CO, Dallinger D, Murphree SS (2009) Practical microwave synthesis for organic chemists – strategies, instruments, and protocols. Wiley-VCH, Weinheim Kappe CO, Dallinger D, Murphree SS (2009) Practical microwave synthesis for organic chemists – strategies, instruments, and protocols. Wiley-VCH, Weinheim
4.
Zurück zum Zitat Leadbeater NE (Hrsg) (2010) Microwave heating as a tool for sustainable chemistry. CRC Press, Boca Raton Leadbeater NE (Hrsg) (2010) Microwave heating as a tool for sustainable chemistry. CRC Press, Boca Raton
5.
Zurück zum Zitat Larhed M, Olofsson K (Hrsg) (2006) Microwave methods in organic synthesis. Springer, Heidelberg Larhed M, Olofsson K (Hrsg) (2006) Microwave methods in organic synthesis. Springer, Heidelberg
6.
7.
Zurück zum Zitat Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis – a review. Tetrahedron 57:9225–9283CrossRef Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis – a review. Tetrahedron 57:9225–9283CrossRef
8.
Zurück zum Zitat Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284CrossRef Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284CrossRef
9.
Zurück zum Zitat de la Hoz A, Diaz-Ortiz A, Prieto P (2016) Microwave-assisted green organic synthesis. In: Stefanidis G, Stankiewicz A (Hrsg) Alternative energy sources for green chemistry. Royal Society of Chemistry, Cambridge, S 1–33 de la Hoz A, Diaz-Ortiz A, Prieto P (2016) Microwave-assisted green organic synthesis. In: Stefanidis G, Stankiewicz A (Hrsg) Alternative energy sources for green chemistry. Royal Society of Chemistry, Cambridge, S 1–33
10.
Zurück zum Zitat Damm M, Glasnov TN, Kappe CO (2010) Translating high-temperature microwave chemistry to scalable continuous flow processes. Org Process Res Dev 14:215–224CrossRef Damm M, Glasnov TN, Kappe CO (2010) Translating high-temperature microwave chemistry to scalable continuous flow processes. Org Process Res Dev 14:215–224CrossRef
11.
Zurück zum Zitat Glasnov TN, Kappe CO (2011) The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes. Chem Eur J 17:11956–11968PubMedCrossRef Glasnov TN, Kappe CO (2011) The microwave-to-flow paradigm: translating high-temperature batch microwave chemistry to scalable continuous-flow processes. Chem Eur J 17:11956–11968PubMedCrossRef
12.
Zurück zum Zitat Razzaq T, Kappe CO (2010) Continuous flow organic synthesis under high-temperature/pressure conditions. Chem Asian J 5:1274–1289PubMedCrossRef Razzaq T, Kappe CO (2010) Continuous flow organic synthesis under high-temperature/pressure conditions. Chem Asian J 5:1274–1289PubMedCrossRef
13.
Zurück zum Zitat Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology – a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54:6688–6728CrossRef Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology – a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54:6688–6728CrossRef
14.
Zurück zum Zitat Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) The hitchhiker’s guide to flow chemistry. Chem Rev 117:11796–11893PubMedCrossRef Plutschack MB, Pieber B, Gilmore K, Seeberger PH (2017) The hitchhiker’s guide to flow chemistry. Chem Rev 117:11796–11893PubMedCrossRef
15.
Zurück zum Zitat Porta R, Benaglia M, Puglisi A (2016) Flow chemistry: recent developments in the synthesis of pharmaceutical products. Org Process Res Dev 20:2–25CrossRef Porta R, Benaglia M, Puglisi A (2016) Flow chemistry: recent developments in the synthesis of pharmaceutical products. Org Process Res Dev 20:2–25CrossRef
16.
Zurück zum Zitat Malet-Sanz L, Susanne F (2012) Continuous flow synthesis. A pharma perspective. J Med Chem 55:4062–4098PubMedCrossRef Malet-Sanz L, Susanne F (2012) Continuous flow synthesis. A pharma perspective. J Med Chem 55:4062–4098PubMedCrossRef
17.
Zurück zum Zitat Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV (2016) Taming hazardous chemistry by continuous flow technology. Chem Soc Rev 45:4892–4928PubMedCrossRef Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV (2016) Taming hazardous chemistry by continuous flow technology. Chem Soc Rev 45:4892–4928PubMedCrossRef
18.
Zurück zum Zitat Britton J, Raston CL (2017) Multi-step continuous-flow synthesis. Chem Soc Rev 46:1250–1271PubMedCrossRef Britton J, Raston CL (2017) Multi-step continuous-flow synthesis. Chem Soc Rev 46:1250–1271PubMedCrossRef
19.
Zurück zum Zitat Newman SG, Jensen KF (2013) The role of flow in green chemistry and engineering. Green Chem 15:1456–1472CrossRef Newman SG, Jensen KF (2013) The role of flow in green chemistry and engineering. Green Chem 15:1456–1472CrossRef
20.
Zurück zum Zitat Vaccaro L (Hrsg) (2017) Sustainable flow chemistry: methods and applications. Wiley-VCH, Weinheim Vaccaro L (Hrsg) (2017) Sustainable flow chemistry: methods and applications. Wiley-VCH, Weinheim
21.
Zurück zum Zitat Lummiss JAM, Morse PD, Beingessner RL, Jamison TF (2017) Towards more efficient, greener syntheses through flow chemistry. Chem Rec 17:667–680PubMedCrossRef Lummiss JAM, Morse PD, Beingessner RL, Jamison TF (2017) Towards more efficient, greener syntheses through flow chemistry. Chem Rec 17:667–680PubMedCrossRef
22.
Zurück zum Zitat Eckert CA, Knutson BL, Debenedetti PG (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383:313–318CrossRef Eckert CA, Knutson BL, Debenedetti PG (1996) Supercritical fluids as solvents for chemical and materials processing. Nature 383:313–318CrossRef
23.
Zurück zum Zitat Jessop PG, Leitner W (Hrsg) (1999) Chemical synthesis using supercritical fluids. Wiley-VCH, Weinheim Jessop PG, Leitner W (Hrsg) (1999) Chemical synthesis using supercritical fluids. Wiley-VCH, Weinheim
24.
Zurück zum Zitat van Eldik R, Klärner F-G (Hrsg) (2002) High pressure chemistry: synthetic, mechanistic, and supercritical applications. Wiley-VCH, Weinheim van Eldik R, Klärner F-G (Hrsg) (2002) High pressure chemistry: synthetic, mechanistic, and supercritical applications. Wiley-VCH, Weinheim
25.
Zurück zum Zitat Adeyemi A, Bergman J, Brånalt J, Sävmarker J, Larhed M (2017) Continuous flow synthesis under high-temperature/high-pressure conditions using a resistively heated flow reactor. Org Process Res Dev 21:947–955CrossRef Adeyemi A, Bergman J, Brånalt J, Sävmarker J, Larhed M (2017) Continuous flow synthesis under high-temperature/high-pressure conditions using a resistively heated flow reactor. Org Process Res Dev 21:947–955CrossRef
26.
Zurück zum Zitat May SA, Johnson MD, Braden TM, Calvin JR, Haeberle BD, Jines AR, Miller RD, Plocharczyk EF, Rener GA, Richey RN, Schmid CR, Vaid RK, Yu H (2012) Rapid development and scale-up of a 1H-4-substituted imidazole intermediate enabled by chemistry in continuous plug flow reactors. Org Process Res Dev 16:982–1002CrossRef May SA, Johnson MD, Braden TM, Calvin JR, Haeberle BD, Jines AR, Miller RD, Plocharczyk EF, Rener GA, Richey RN, Schmid CR, Vaid RK, Yu H (2012) Rapid development and scale-up of a 1H-4-substituted imidazole intermediate enabled by chemistry in continuous plug flow reactors. Org Process Res Dev 16:982–1002CrossRef
27.
Zurück zum Zitat Houk KN, Gonzalez J, Li Y (1995) Pericyclic reaction transition states: passions and punctilios, 1935–1995. Acc Chem Res 28:81–90CrossRef Houk KN, Gonzalez J, Li Y (1995) Pericyclic reaction transition states: passions and punctilios, 1935–1995. Acc Chem Res 28:81–90CrossRef
28.
Zurück zum Zitat Fleming I (2015) Pericyclic reactions, 2nd Aufl. Oxford University Press, Oxford Fleming I (2015) Pericyclic reactions, 2nd Aufl. Oxford University Press, Oxford
29.
Zurück zum Zitat Spangler CW (1976) Thermal [1,j] sigmatropic rearrangements. Chem Rev 76:187–217CrossRef Spangler CW (1976) Thermal [1,j] sigmatropic rearrangements. Chem Rev 76:187–217CrossRef
30.
Zurück zum Zitat Borukhova S, Noël T, Metten B, de Vos E, Hessel V (2013) Solvent- and catalyst-free Huisgen cycloaddition to rufinamide in flow with a greener, less expensive dipolarophile. ChemSusChem 6:2220–2225PubMedCrossRef Borukhova S, Noël T, Metten B, de Vos E, Hessel V (2013) Solvent- and catalyst-free Huisgen cycloaddition to rufinamide in flow with a greener, less expensive dipolarophile. ChemSusChem 6:2220–2225PubMedCrossRef
31.
Zurück zum Zitat Gutmann B, Roduit J-P, Roberge D, Kappe CO (2010) Synthesis of 5-substituted 1H-tetrazoles from nitriles and hydrazoic acid by using a safe and scalable high-temperature microreactor approach. Angew Chem Int Ed 49:7101–7105CrossRef Gutmann B, Roduit J-P, Roberge D, Kappe CO (2010) Synthesis of 5-substituted 1H-tetrazoles from nitriles and hydrazoic acid by using a safe and scalable high-temperature microreactor approach. Angew Chem Int Ed 49:7101–7105CrossRef
32.
Zurück zum Zitat Gutmann B, Obermayer D, Roduit J-P, Roberge DM, Kappe CO (2012) Safe generation and synthetic utilization of hydrazoic acid in a continuous flow reactor. J Flow Chem 2:8–19CrossRef Gutmann B, Obermayer D, Roduit J-P, Roberge DM, Kappe CO (2012) Safe generation and synthetic utilization of hydrazoic acid in a continuous flow reactor. J Flow Chem 2:8–19CrossRef
33.
Zurück zum Zitat Gutmann B, Glasnov TN, Razzaq T, Goessler W, Roberge DM, Kappe CO (2011) Unusual behavior in the reactivity of 5-substituted-1H-tetrazoles in a resistively heated microreactor. Beilstein J Org Chem 7:503–517PubMedPubMedCentralCrossRef Gutmann B, Glasnov TN, Razzaq T, Goessler W, Roberge DM, Kappe CO (2011) Unusual behavior in the reactivity of 5-substituted-1H-tetrazoles in a resistively heated microreactor. Beilstein J Org Chem 7:503–517PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Varas AC, Noël T, Wang Q, Hessel V (2012) Copper(I)-catalyzed azide–alkyne cycloadditions in microflow: catalyst activity, high-T operation, and an integrated continuous copper scavenging unit. ChemSusChem 5:1703–1707PubMedCrossRef Varas AC, Noël T, Wang Q, Hessel V (2012) Copper(I)-catalyzed azide–alkyne cycloadditions in microflow: catalyst activity, high-T operation, and an integrated continuous copper scavenging unit. ChemSusChem 5:1703–1707PubMedCrossRef
35.
Zurück zum Zitat Palde PB, Jamison TF (2011) Safe and efficient tetrazole synthesis in a continuous-flow microreactor. Angew Chem Int Ed 50:3525–3528CrossRef Palde PB, Jamison TF (2011) Safe and efficient tetrazole synthesis in a continuous-flow microreactor. Angew Chem Int Ed 50:3525–3528CrossRef
36.
Zurück zum Zitat Lengyel L, Nagy TZ, Sipos G, Jones R, Dormán G, Ürge L, Darvas F (2012) Highly efficient thermal cyclization reactions of alkylidene esters in continuous flow to give aromatic/heteroaromatic derivatives. Tetrahedron Lett 53:738–743CrossRef Lengyel L, Nagy TZ, Sipos G, Jones R, Dormán G, Ürge L, Darvas F (2012) Highly efficient thermal cyclization reactions of alkylidene esters in continuous flow to give aromatic/heteroaromatic derivatives. Tetrahedron Lett 53:738–743CrossRef
37.
Zurück zum Zitat Lengyel LC, Sipos G, Sipőcz T, Vágó T, Dormán G, Gerencsér J, Makara G, Darvas F (2015) Synthesis of condensed heterocycles by the Gould–Jacobs reaction in a novel three-mode pyrolysis reactor. Org Process Res Dev 19:399–409CrossRef Lengyel LC, Sipos G, Sipőcz T, Vágó T, Dormán G, Gerencsér J, Makara G, Darvas F (2015) Synthesis of condensed heterocycles by the Gould–Jacobs reaction in a novel three-mode pyrolysis reactor. Org Process Res Dev 19:399–409CrossRef
38.
Zurück zum Zitat Tsoung J, Bogdan AR, Kantor S, Wang Y, Charaschanya M, Djuric SW (2017) Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure flow reactor. J Org Chem 82:1073–1084PubMedCrossRef Tsoung J, Bogdan AR, Kantor S, Wang Y, Charaschanya M, Djuric SW (2017) Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure flow reactor. J Org Chem 82:1073–1084PubMedCrossRef
39.
Zurück zum Zitat Cantillo D, Sheibani H, Kappe CO (2012) Flash flow pyrolysis: mimicking flash vacuum pyrolysis in a high-temperature/high-pressure liquid-phase microreactor environment. J Org Chem 77:2463–2473PubMedCrossRef Cantillo D, Sheibani H, Kappe CO (2012) Flash flow pyrolysis: mimicking flash vacuum pyrolysis in a high-temperature/high-pressure liquid-phase microreactor environment. J Org Chem 77:2463–2473PubMedCrossRef
40.
Zurück zum Zitat Bogaert-Alvarez RJ, Demena P, Kodersha G, Polomski RE, Soundararajan N, Wang SSY (2001) Continuous processing to control a potentially hazardous process: conversion of aryl 1,1-dimethylpropargyl ethers to 2,2-dimethylchromenes (2,2-dimethyl-2H-1-benzopyrans). Org Process Res Dev 5:636–645CrossRef Bogaert-Alvarez RJ, Demena P, Kodersha G, Polomski RE, Soundararajan N, Wang SSY (2001) Continuous processing to control a potentially hazardous process: conversion of aryl 1,1-dimethylpropargyl ethers to 2,2-dimethylchromenes (2,2-dimethyl-2H-1-benzopyrans). Org Process Res Dev 5:636–645CrossRef
41.
Zurück zum Zitat Martin RE, Morawitz F, Kuratli C, Alker AM, Alanine AI (2012) Synthesis of annulated pyridines by intramolecular inverse-electron-demand hetero-Diels–Alder reaction under superheated continuous flow conditions. Eur J Org Chem 2012:47–52CrossRef Martin RE, Morawitz F, Kuratli C, Alker AM, Alanine AI (2012) Synthesis of annulated pyridines by intramolecular inverse-electron-demand hetero-Diels–Alder reaction under superheated continuous flow conditions. Eur J Org Chem 2012:47–52CrossRef
42.
Zurück zum Zitat Lehmann J, Alzieu T, Martin RE, Britton R (2013) The Kondrat’eva reaction in flow: direct access to annulated pyridines. Org Lett 15:3550–3553PubMedCrossRef Lehmann J, Alzieu T, Martin RE, Britton R (2013) The Kondrat’eva reaction in flow: direct access to annulated pyridines. Org Lett 15:3550–3553PubMedCrossRef
43.
Zurück zum Zitat Tsoung J, Wang Y, Djuric SW (2017) Expedient Diels–Alder cycloadditions with ortho-quinodimethanes in a high temperature/pressure flow reactor. React Chem Eng 2:458–461CrossRef Tsoung J, Wang Y, Djuric SW (2017) Expedient Diels–Alder cycloadditions with ortho-quinodimethanes in a high temperature/pressure flow reactor. React Chem Eng 2:458–461CrossRef
44.
Zurück zum Zitat Jouanno L-A, Chevalier A, Sekkat N, Perzo N, Castel H, Romieu A, Lange N, Sabot C, Renard P-Y (2014) Kondrat’eva ligation: Diels–Alder-based irreversible reaction for bioconjugation. J Org Chem 79:10353–10366PubMedCrossRef Jouanno L-A, Chevalier A, Sekkat N, Perzo N, Castel H, Romieu A, Lange N, Sabot C, Renard P-Y (2014) Kondrat’eva ligation: Diels–Alder-based irreversible reaction for bioconjugation. J Org Chem 79:10353–10366PubMedCrossRef
45.
Zurück zum Zitat Alvarez-Builla J, Vaquero JJ, Barluenga J (Hrsg) (2011) Modern heterocyclic chemistry. Wiley-VCH, Weinheim Alvarez-Builla J, Vaquero JJ, Barluenga J (Hrsg) (2011) Modern heterocyclic chemistry. Wiley-VCH, Weinheim
46.
Zurück zum Zitat Joule JA, Mills K (2010) Heterocyclic chemistry, 5th Aufl. Wiley-Blackwell, New York Joule JA, Mills K (2010) Heterocyclic chemistry, 5th Aufl. Wiley-Blackwell, New York
47.
Zurück zum Zitat Herath A, Cosford NDP (2010) One-step continuous flow synthesis of highly substituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butyl esters. Org Lett 12:5182–5185PubMedPubMedCentralCrossRef Herath A, Cosford NDP (2010) One-step continuous flow synthesis of highly substituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butyl esters. Org Lett 12:5182–5185PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Obermayer D, Glasnov TN, Kappe CO (2011) Microwave-assisted and continuous flow multistep synthesis of 4-(pyrazol-1-yl)carboxanilides. J Org Chem 76:6657–6669PubMedCrossRef Obermayer D, Glasnov TN, Kappe CO (2011) Microwave-assisted and continuous flow multistep synthesis of 4-(pyrazol-1-yl)carboxanilides. J Org Chem 76:6657–6669PubMedCrossRef
49.
Zurück zum Zitat Darvas F, Dorman G, Lengyel L, Kovacs I, Jones R, Urge L (2009) High pressure, high temperature reactions in continuous flow; merging discovery and process chemistry. Chim Oggi Chem Today 27:40–43 Darvas F, Dorman G, Lengyel L, Kovacs I, Jones R, Urge L (2009) High pressure, high temperature reactions in continuous flow; merging discovery and process chemistry. Chim Oggi Chem Today 27:40–43
50.
Zurück zum Zitat Nagao I, Ishizaka T, Kawanami H (2016) Rapid production of benzazole derivatives by a high-pressure and high-temperature water microflow chemical process. Green Chem 18:3494–3498CrossRef Nagao I, Ishizaka T, Kawanami H (2016) Rapid production of benzazole derivatives by a high-pressure and high-temperature water microflow chemical process. Green Chem 18:3494–3498CrossRef
51.
Zurück zum Zitat Grant D, Dahl R, Cosford NDP (2008) Rapid multistep synthesis of 1,2,4-oxadiazoles in a single continuous microreactor sequence. J Org Chem 73:7219–7223PubMedPubMedCentralCrossRef Grant D, Dahl R, Cosford NDP (2008) Rapid multistep synthesis of 1,2,4-oxadiazoles in a single continuous microreactor sequence. J Org Chem 73:7219–7223PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Seki T, Kokubo Y, Ichikawa S, Suzuki T, Kayaki Y, Ikariya T (2009) Mesoporous silica-catalysed continuous chemical fixation of CO2 with N,N′-dimethylethylenediamine in supercritical CO2: the efficient synthesis of 1,3-dimethyl-2-imidazolidinone. Chem Commun:349–351 Seki T, Kokubo Y, Ichikawa S, Suzuki T, Kayaki Y, Ikariya T (2009) Mesoporous silica-catalysed continuous chemical fixation of CO2 with N,N′-dimethylethylenediamine in supercritical CO2: the efficient synthesis of 1,3-dimethyl-2-imidazolidinone. Chem Commun:349–351
53.
Zurück zum Zitat Streng ES, Lee DS, George MW, Poliakoff M (2017) Continuous N-alkylation reactions of amino alcohols using γ-Al2O3 and supercritical CO2: unexpected formation of cyclic ureas and urethanes by reaction with CO2. Beilstein J Org Chem 13:329–337PubMedPubMedCentralCrossRef Streng ES, Lee DS, George MW, Poliakoff M (2017) Continuous N-alkylation reactions of amino alcohols using γ-Al2O3 and supercritical CO2: unexpected formation of cyclic ureas and urethanes by reaction with CO2. Beilstein J Org Chem 13:329–337PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Pagano N, Herath A, Cosford NDP (2011) An automated process for a sequential heterocycle/multicomponent reaction: multistep continuous flow synthesis of 5-(thiazol-2-yl)-3,4-dihydropyrimidin-2(1H)-ones. J Flow Chem 1:28–31PubMedPubMedCentralCrossRef Pagano N, Herath A, Cosford NDP (2011) An automated process for a sequential heterocycle/multicomponent reaction: multistep continuous flow synthesis of 5-(thiazol-2-yl)-3,4-dihydropyrimidin-2(1H)-ones. J Flow Chem 1:28–31PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Jin J, Guidi S, Abada Z, Amara Z, Selva M, George MW, Poliakoff M (2017) Continuous niobium phosphate catalysed Skraup reaction for quinoline synthesis from solketal. Green Chem 19:2439–2447CrossRef Jin J, Guidi S, Abada Z, Amara Z, Selva M, George MW, Poliakoff M (2017) Continuous niobium phosphate catalysed Skraup reaction for quinoline synthesis from solketal. Green Chem 19:2439–2447CrossRef
56.
Zurück zum Zitat Yan C, Fraga-Dubreuil J, Garcia-Verdugo E, Hamley PA, Poliakoff M, Pearson I, Coote AS (2008) The continuous synthesis of ε-caprolactam from 6-aminocapronitrile in high-temperature water. Green Chem 10:98–103CrossRef Yan C, Fraga-Dubreuil J, Garcia-Verdugo E, Hamley PA, Poliakoff M, Pearson I, Coote AS (2008) The continuous synthesis of ε-caprolactam from 6-aminocapronitrile in high-temperature water. Green Chem 10:98–103CrossRef
57.
Zurück zum Zitat Bunnett JF, Zahler RE (1951) Aromatic nucleophilic substitution reactions. Chem Rev 49:273–412CrossRef Bunnett JF, Zahler RE (1951) Aromatic nucleophilic substitution reactions. Chem Rev 49:273–412CrossRef
58.
Zurück zum Zitat Terrier F (2013) Modern nucleophilic aromatic substitution. Wiley-VCH, Weinheim Terrier F (2013) Modern nucleophilic aromatic substitution. Wiley-VCH, Weinheim
59.
Zurück zum Zitat Razzaq T, Glasnov TN, Kappe CO (2009) Continuous-flow microreactor chemistry under high-temperature/pressure conditions. Eur J Org Chem 2009:1321–1325CrossRef Razzaq T, Glasnov TN, Kappe CO (2009) Continuous-flow microreactor chemistry under high-temperature/pressure conditions. Eur J Org Chem 2009:1321–1325CrossRef
60.
Zurück zum Zitat Hamper BC, Tesfu E (2007) Direct uncatalyzed amination of 2-chloropyridine using a flow reactor. Synlett 2007:2257–2261CrossRef Hamper BC, Tesfu E (2007) Direct uncatalyzed amination of 2-chloropyridine using a flow reactor. Synlett 2007:2257–2261CrossRef
61.
Zurück zum Zitat Petersen TP, Larsen AF, Ritzén A, Ulven T (2013) Continuous flow nucleophilic aromatic substitution with dimethylamine generated in situ by decomposition of DMF. J Org Chem 78:4190–4195PubMedCrossRef Petersen TP, Larsen AF, Ritzén A, Ulven T (2013) Continuous flow nucleophilic aromatic substitution with dimethylamine generated in situ by decomposition of DMF. J Org Chem 78:4190–4195PubMedCrossRef
62.
Zurück zum Zitat Charaschanya M, Bogdan AR, Wang Y, Djuric SW (2016) Nucleophilic aromatic substitution of heterocycles using a high-temperature and high-pressure flow reactor. Tetrahedron Lett 57:1035–1039CrossRef Charaschanya M, Bogdan AR, Wang Y, Djuric SW (2016) Nucleophilic aromatic substitution of heterocycles using a high-temperature and high-pressure flow reactor. Tetrahedron Lett 57:1035–1039CrossRef
63.
Zurück zum Zitat Bogdan AR, Charaschanya M, Dombrowski AW, Wang Y, Djuric SW (2016) High-temperature Boc deprotection in flow and its application in multistep reaction sequences. Org Lett 18:1732–1735PubMedCrossRef Bogdan AR, Charaschanya M, Dombrowski AW, Wang Y, Djuric SW (2016) High-temperature Boc deprotection in flow and its application in multistep reaction sequences. Org Lett 18:1732–1735PubMedCrossRef
Metadaten
Titel
Durchflussunterstützte Synthese von Heterocyclen bei hohen Temperaturen
verfasst von
Ryan J. Sullivan
Stephen G. Newman
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-51912-3_4