Skip to main content
Erschienen in: Geotechnical and Geological Engineering 2/2019

12.08.2018 | Original Paper

Dynamic Properties of Geologic Specimens Subjected to Split-Hopkinson Pressure Bar Compression Testing at the University of Kentucky

verfasst von: Russell Lamont, Jhon Silva

Erschienen in: Geotechnical and Geological Engineering | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Advances in materials science have shown that material behavior varies according to the rate of load application (strain-rate sensitivity). With regards to compressive strength, materials have been observed to exhibit a strengthening, weakening, or negligible response to increasing strain-rates (Zhang and Zhao in Rock Mech Rock Eng 47(4):1411–1478, 2014). Practical experimentation to ascertain these responses has been carried out for over a century, based on the fundamental equipment design pioneered by John Hopkinson in 1872 and modified by Kolsky in 1949. A contemporary Split-Hopkinson Pressure Bar (SHPB) has been constructed at the University of Kentucky (UKY) to research the dynamic properties of various geologic materials for mining and civil engineering applications. Geologic samples are of an inconsistent nature due to inherent discontinuities and large grain size. To ensure test specimens are of adequate size to reflect this inconsistent nature, the SHPB at the UKY has been constructed with component bars of 2 in. (5.08 cm) diameter. Prior publications have discussed various considerations associated with the testing procedure and data processing of this SHPB (dispersion correction, pulse shaping, etc.) (Silva and Lamont 2017). This publication presents the results of materials testing with this SHPB. Three materials were selected: Bedford (Indiana) Limestone, Berea (Ohio) Sandstone, and Aluminum 6061-T6. Two of these are common aggregates found in the mining and construction industries, while the third is an aluminum variant often encountered in industrial applications. Dynamic compression testing of these materials at various strain rates was carried out, and the results are included. Static test results have been included for comparison, and the testing and data analysis procedure are discussed in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ASM International (1990) Metals handbook, volume 2: properties and selection: nonferrous alloys and special-purpose materials, 10 edn. ASM International ASM International (1990) Metals handbook, volume 2: properties and selection: nonferrous alloys and special-purpose materials, 10 edn. ASM International
Zurück zum Zitat Broch E (1983) Estimation of strength anisotropy using the point-load test. Int J Rock Mech Min Sci Geomech Abstr 20(4):181–187CrossRef Broch E (1983) Estimation of strength anisotropy using the point-load test. Int J Rock Mech Min Sci Geomech Abstr 20(4):181–187CrossRef
Zurück zum Zitat Chen W, Zhang B, Forrestal MJ (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39(2):81–85CrossRef Chen W, Zhang B, Forrestal MJ (1999) A split Hopkinson bar technique for low-impedance materials. Exp Mech 39(2):81–85CrossRef
Zurück zum Zitat Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11(3):155–179CrossRef Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11(3):155–179CrossRef
Zurück zum Zitat Forster IR (1983) The influence of core sample geometry on the axial point-load test. Int J Rock Mech Min Sci Geomech Abstr 20(6):291–295CrossRef Forster IR (1983) The influence of core sample geometry on the axial point-load test. Int J Rock Mech Min Sci Geomech Abstr 20(6):291–295CrossRef
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46CrossRef Frew DJ, Forrestal MJ, Chen W (2001) A split Hopkinson pressure bar technique to determine compressive stress–strain data for rock materials. Exp Mech 41(1):40–46CrossRef
Zurück zum Zitat Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106CrossRef Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42(1):93–106CrossRef
Zurück zum Zitat Gama BA, Lopatnikov SL, Gillespie JW Jr (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57(4):223–250CrossRef Gama BA, Lopatnikov SL, Gillespie JW Jr (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57(4):223–250CrossRef
Zurück zum Zitat Gong JC, Malvern LE, Jenkins DA (1990) Dispersion investigation in the split Hopkinson pressure bar. J Eng Mater Technol 112(3):309–314CrossRef Gong JC, Malvern LE, Jenkins DA (1990) Dispersion investigation in the split Hopkinson pressure bar. J Eng Mater Technol 112(3):309–314CrossRef
Zurück zum Zitat Gray GT III (2000) Classic split Hopkinson pressure bar testing. ASM Handb Mech Test Eval 8:462–476 Gray GT III (2000) Classic split Hopkinson pressure bar testing. ASM Handb Mech Test Eval 8:462–476
Zurück zum Zitat Holt JM (1996) Structural alloys handbook, Technical Ed; Ho CY (ed) CINDAS/Purdue University, West Lafayette, IN Holt JM (1996) Structural alloys handbook, Technical Ed; Ho CY (ed) CINDAS/Purdue University, West Lafayette, IN
Zurück zum Zitat Kaiser MA (1998) Advancements in the split Hopkinson bar test. Diss. Virginia Tech Kaiser MA (1998) Advancements in the split Hopkinson bar test. Diss. Virginia Tech
Zurück zum Zitat Liu S et al (2011) SHPB experimental study of sericite-quartz schist and sandstone. Chin J Rock Mech Eng 30(9):1864–1871 Liu S et al (2011) SHPB experimental study of sericite-quartz schist and sandstone. Chin J Rock Mech Eng 30(9):1864–1871
Zurück zum Zitat Lu YB, Li QM (2010) Appraisal of pulse-shaping technique in split Hopkinson pressure bar tests for brittle materials. Int J Prot Struct 1(3):363–390CrossRef Lu YB, Li QM (2010) Appraisal of pulse-shaping technique in split Hopkinson pressure bar tests for brittle materials. Int J Prot Struct 1(3):363–390CrossRef
Zurück zum Zitat Manes A et al (2011) Analysis of strain rate behavior of an Al 6061 T6 alloy. Proc Eng 10:3477–3482CrossRef Manes A et al (2011) Analysis of strain rate behavior of an Al 6061 T6 alloy. Proc Eng 10:3477–3482CrossRef
Zurück zum Zitat Petrov Y, Selyutina N (2015) Scale and size effects in dynamic fracture of concretes and rocks. In: EPJ web of conferences, vol 94. EDP Sciences Petrov Y, Selyutina N (2015) Scale and size effects in dynamic fracture of concretes and rocks. In: EPJ web of conferences, vol 94. EDP Sciences
Zurück zum Zitat Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77(1):263–267CrossRef Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar. J Am Ceram Soc 77(1):263–267CrossRef
Zurück zum Zitat Shankland TJ, Johnson PA, Hopson TM (1993) Elastic wave attenuation and velocity of Berea sandstone measured in the frequency domain. Geophys Res Lett 20(5):391–394CrossRef Shankland TJ, Johnson PA, Hopson TM (1993) Elastic wave attenuation and velocity of Berea sandstone measured in the frequency domain. Geophys Res Lett 20(5):391–394CrossRef
Zurück zum Zitat Silva J, Lamont R (2017) Dispersion signal analysis in a Split-Hopkinson pressure bar at the University of Kentucky. Fragblast Int J Blast Fragm 11(1):7–22 Silva J, Lamont R (2017) Dispersion signal analysis in a Split-Hopkinson pressure bar at the University of Kentucky. Fragblast Int J Blast Fragm 11(1):7–22
Zurück zum Zitat Subhash G, Ravichandran G (2000) Split-Hopkinson pressure bar testing of ceramics. ASM International, Materials Park, OH, pp 497–504 Subhash G, Ravichandran G (2000) Split-Hopkinson pressure bar testing of ceramics. ASM International, Materials Park, OH, pp 497–504
Zurück zum Zitat Wu XJ, Gorham DA (1997) Stress equilibrium in the split Hopkinson pressure bar test. J Phys IV 7(C3):C3–91 Wu XJ, Gorham DA (1997) Stress equilibrium in the split Hopkinson pressure bar test. J Phys IV 7(C3):C3–91
Zurück zum Zitat Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478CrossRef Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478CrossRef
Metadaten
Titel
Dynamic Properties of Geologic Specimens Subjected to Split-Hopkinson Pressure Bar Compression Testing at the University of Kentucky
verfasst von
Russell Lamont
Jhon Silva
Publikationsdatum
12.08.2018
Verlag
Springer International Publishing
Erschienen in
Geotechnical and Geological Engineering / Ausgabe 2/2019
Print ISSN: 0960-3182
Elektronische ISSN: 1573-1529
DOI
https://doi.org/10.1007/s10706-018-0659-8

Weitere Artikel der Ausgabe 2/2019

Geotechnical and Geological Engineering 2/2019 Zur Ausgabe