Skip to main content
Erschienen in: Journal of Polymer Research 4/2024

01.04.2024 | Original Paper

Effect of para-substituent on copolymerization and thermal degradation kinetics of styrene copolymers composed with maleic anhydride derivative

verfasst von: Changlei Yang, Yanping Wang, Yufei Liu, Jun Qin, Min He, Shuhao Qin, Jie Yu

Erschienen in: Journal of Polymer Research | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The investigation of the polymerization kinetics and thermal degradation kinetics of maleic anhydride copolymers is of significant reference value for the synthesis of multifunctional and high-performance maleic anhydride-based copolymers and their applications in different fields. In this study, anhydride (MAH) derived styrene copolymers, namely Poly(N-phenylmaleimide-alt-styrene) (PNS), Poly(N-(4-carboxyphenyl)maleimide-alt-styrene) (PCS), andpoly(N-fluorine-phenylmaleimide-alt-styrene) (PFS), were prepared using a solution copolymerization method. The copolymerization kinetics and thermal degradation kinetics of MAH derived styrene copolymers were investigated using nuclear magnetic resonance (NMR) and thermogravimetric analysis (TGA), as well as the Arrhenius equation and Kim-Park method. The study revealed that the incorporation of carboxyl and fluorine groups had varying degrees of influence on maleic anhydride-styrene copolymers. The copolymerization rate constant (K value) followed the order PNS>PCS>PFS, while the copolymerization activation energy (Ea) followed the order PNS<PFS<PCS. Moreover, the thermal degradation activation energy (Ea) followed the order PNS<PNS<PFS, indicating that PFS exhibited easier polymerization and the fluorine group significantly enhanced the thermal stability of the maleic anhydride-styrene copolymers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Huang J, Turner SR (2017) Recent advances in alternating copolymers: the synthesis, modification, and applications of precision polymers. Polymer 116:572–586CrossRef Huang J, Turner SR (2017) Recent advances in alternating copolymers: the synthesis, modification, and applications of precision polymers. Polymer 116:572–586CrossRef
2.
Zurück zum Zitat Liu W, Li Q, Zhang Y et al (2021) Continuous-flow RAFT copolymerization of styrene and maleic anhydride: acceleration of reaction and effect of polymerization conditions on reaction kinetics. J Flow Chem 11(4):867–875CrossRef Liu W, Li Q, Zhang Y et al (2021) Continuous-flow RAFT copolymerization of styrene and maleic anhydride: acceleration of reaction and effect of polymerization conditions on reaction kinetics. J Flow Chem 11(4):867–875CrossRef
3.
Zurück zum Zitat Jia YG, Liu LY, Lei B et al (2011) Crown ether cavity-containing copolymers via controlled alternating cyclocopolymerization. Macromolecules 44(16):6311–6317CrossRef Jia YG, Liu LY, Lei B et al (2011) Crown ether cavity-containing copolymers via controlled alternating cyclocopolymerization. Macromolecules 44(16):6311–6317CrossRef
4.
Zurück zum Zitat Chen G, Yang Y, Kang D et al (2021) Enhanced performances of chlorinated polyvinyl chloride (CPVC) ultrafiltration membranes by styrene-maleic anhydride copolymer. Sep Purif Technol 258:118043CrossRef Chen G, Yang Y, Kang D et al (2021) Enhanced performances of chlorinated polyvinyl chloride (CPVC) ultrafiltration membranes by styrene-maleic anhydride copolymer. Sep Purif Technol 258:118043CrossRef
5.
Zurück zum Zitat Duan H, Qiu T, Guo L et al (2016) The aminolysis of styrene–maleic anhydride copolymers for a new modifier used in urea-formaldehyde resins. Int J Adhes Adhes 66:138–146CrossRef Duan H, Qiu T, Guo L et al (2016) The aminolysis of styrene–maleic anhydride copolymers for a new modifier used in urea-formaldehyde resins. Int J Adhes Adhes 66:138–146CrossRef
6.
Zurück zum Zitat Yang G, Wang HY, Nie YY (2023) Modified styrene-maleic anhydride copolymer-based chromatographic stationary phase for phospholipid separation and analysis. Chin J Chromatogr 41(10):921–928CrossRef Yang G, Wang HY, Nie YY (2023) Modified styrene-maleic anhydride copolymer-based chromatographic stationary phase for phospholipid separation and analysis. Chin J Chromatogr 41(10):921–928CrossRef
7.
Zurück zum Zitat Hua Y, Ren X, Ma H, Wu D, Song X, Wang H, Yang L, Fan D, Wei Q (2023) Facile preparation of poly-(styrene-co-maleic anhydride) encapsulated Iridium(III) complexes as highly efficient electrochemiluminescence indicators for sensitive immunoassay of CYFRA 21-1. Anal Chim Acta 1274:341521CrossRef Hua Y, Ren X, Ma H, Wu D, Song X, Wang H, Yang L, Fan D, Wei Q (2023) Facile preparation of poly-(styrene-co-maleic anhydride) encapsulated Iridium(III) complexes as highly efficient electrochemiluminescence indicators for sensitive immunoassay of CYFRA 21-1. Anal Chim Acta 1274:341521CrossRef
8.
Zurück zum Zitat Sawayama J, Gautam S, Lisi F (2023) Re-examination of the polymer encapsulation of quantum dots for biological applications. ACS Appl Nano Mater 6(5):3139–4077 Sawayama J, Gautam S, Lisi F (2023) Re-examination of the polymer encapsulation of quantum dots for biological applications. ACS Appl Nano Mater 6(5):3139–4077
9.
Zurück zum Zitat Ardeshiri F, Mahdavi H (2016) An efficient nanofiltration membrane based on blending of polyethersulfone with modified (styrene/maleic anhydride) copolymer. J Iran Chem Soc 13:873–880CrossRef Ardeshiri F, Mahdavi H (2016) An efficient nanofiltration membrane based on blending of polyethersulfone with modified (styrene/maleic anhydride) copolymer. J Iran Chem Soc 13:873–880CrossRef
10.
Zurück zum Zitat Atıcı AB, Sütekin SD (2018) Controlling of free radical copolymerization of styrene and maleic anhydride via RAFT process for the preparation of acetaminophen drug conjugates. Radiat Phys Chem 148:5–12CrossRef Atıcı AB, Sütekin SD (2018) Controlling of free radical copolymerization of styrene and maleic anhydride via RAFT process for the preparation of acetaminophen drug conjugates. Radiat Phys Chem 148:5–12CrossRef
11.
Zurück zum Zitat Mahdavian AR, Shaghaghi S (2006) Flame-retardancy improvement of novel styrene-maleic anhydride based copolymers. J Polym Res 13:416–419 Mahdavian AR, Shaghaghi S (2006) Flame-retardancy improvement of novel styrene-maleic anhydride based copolymers. J Polym Res 13:416–419
12.
Zurück zum Zitat Zhang X, Guo Z, Yao Y (2022) Preparation and application of recyclable polymer aerogels from styrene-maleic anhydride alternating copolymers. Chem Eng J 455:140363 Zhang X, Guo Z, Yao Y (2022) Preparation and application of recyclable polymer aerogels from styrene-maleic anhydride alternating copolymers. Chem Eng J 455:140363
13.
Zurück zum Zitat Zhong Y, Mao Z, Qian T (2018) The comb-like modified styrene-maleic anhydride copolymer dispersant for disperse dyes. J Appl Polym Sci 136(16):47330 Zhong Y, Mao Z, Qian T (2018) The comb-like modified styrene-maleic anhydride copolymer dispersant for disperse dyes. J Appl Polym Sci 136(16):47330
14.
Zurück zum Zitat Pan X, Hua C, Li C (2003) Synthesis of novel copoly(styrene–maleic anhydride) materials and their luminescent properties. Eur Polymer J 36(6):1091–1097 Pan X, Hua C, Li C (2003) Synthesis of novel copoly(styrene–maleic anhydride) materials and their luminescent properties. Eur Polymer J 36(6):1091–1097
15.
Zurück zum Zitat Maine A, Tamayo L, Leiva Á, González A, Ríos HE, Rojas-Romo C, Jara P, Araya-Durán I, González-Nilo F, Yazdani-Pedram M, Santana P (2023) Conformational changes of poly(maleic anhydride-alt-styrene) modified with amino acids in an aqueous medium and their effect on cytocompatibility and hemolytic response. ACS Appl Bio Mater 6(12):5125–5874CrossRef Maine A, Tamayo L, Leiva Á, González A, Ríos HE, Rojas-Romo C, Jara P, Araya-Durán I, González-Nilo F, Yazdani-Pedram M, Santana P (2023) Conformational changes of poly(maleic anhydride-alt-styrene) modified with amino acids in an aqueous medium and their effect on cytocompatibility and hemolytic response. ACS Appl Bio Mater 6(12):5125–5874CrossRef
16.
Zurück zum Zitat Klumperman B (2010) Mechanistic considerations on styrene–maleic anhydride copolymerization reactions. Polym Chem 1(5):558–562CrossRef Klumperman B (2010) Mechanistic considerations on styrene–maleic anhydride copolymerization reactions. Polym Chem 1(5):558–562CrossRef
17.
Zurück zum Zitat Ten Brummelhuis N, Stutz MB (2016) Penultimate effects in the copolymerization of maleic anhydride with electron-rich styrene derivatives. J Polym Sci Part A Polym Chem 54(18):2932–2939CrossRef Ten Brummelhuis N, Stutz MB (2016) Penultimate effects in the copolymerization of maleic anhydride with electron-rich styrene derivatives. J Polym Sci Part A Polym Chem 54(18):2932–2939CrossRef
18.
Zurück zum Zitat Liu K, Xiong Q, Gu Z et al (2023) Highly efficient one-pot synthesis of anhydride-riched terpolymers from radical dual-alternating strategy. J Polym Res 30:192CrossRef Liu K, Xiong Q, Gu Z et al (2023) Highly efficient one-pot synthesis of anhydride-riched terpolymers from radical dual-alternating strategy. J Polym Res 30:192CrossRef
19.
Zurück zum Zitat Ghosh S, Paul S, Bag S (2021) Styrene-maleimide/maleic anhydride alternating copolymers: recent advances and future perspectives. Macromol Rapid Commun 42(23):2100501CrossRef Ghosh S, Paul S, Bag S (2021) Styrene-maleimide/maleic anhydride alternating copolymers: recent advances and future perspectives. Macromol Rapid Commun 42(23):2100501CrossRef
20.
Zurück zum Zitat Samyn P, Schoukens G (2014) Thermo-analytical study on transitions in styrene–maleic anhydride copolymers with low- and high-molecular weights. Thermochim Acta 580:28–37CrossRef Samyn P, Schoukens G (2014) Thermo-analytical study on transitions in styrene–maleic anhydride copolymers with low- and high-molecular weights. Thermochim Acta 580:28–37CrossRef
21.
Zurück zum Zitat Cai L, Cui D, Li S (2023) Lewis acids activated spontaneous alternating copolymerization of maleic anhydride and styrene derivatives. Chem Asian J 18(4):202201079CrossRef Cai L, Cui D, Li S (2023) Lewis acids activated spontaneous alternating copolymerization of maleic anhydride and styrene derivatives. Chem Asian J 18(4):202201079CrossRef
22.
Zurück zum Zitat Guo X, Gao R (2023) Highly differentiated multi-stimuli-responsive fluorescence performance of tetraphenylethylene containing styrene–maleic acid copolymers induced by macromolecular architecture control. Constr Build Mater 14(47):5178–5190 Guo X, Gao R (2023) Highly differentiated multi-stimuli-responsive fluorescence performance of tetraphenylethylene containing styrene–maleic acid copolymers induced by macromolecular architecture control. Constr Build Mater 14(47):5178–5190
23.
Zurück zum Zitat Gody G, Hartlieb M, Moriceau G (2017) Functional multisite copolymer by one-pot sequential RAFT copolymerization of styrene and maleic anhydride. Polym Chem 8:4152–4161CrossRef Gody G, Hartlieb M, Moriceau G (2017) Functional multisite copolymer by one-pot sequential RAFT copolymerization of styrene and maleic anhydride. Polym Chem 8:4152–4161CrossRef
24.
Zurück zum Zitat Ding M (2013) Chen M Niu S, Cheng Z, Zhu X. Synthesis of well-defined copolymer of acrylonitrile and maleic anhydride via RAFT polymerization 51(24):5263–5269 Ding M (2013) Chen M Niu S, Cheng Z, Zhu X. Synthesis of well-defined copolymer of acrylonitrile and maleic anhydride via RAFT polymerization 51(24):5263–5269
25.
Zurück zum Zitat Cao K, Huang Y, Liu HY (2006) Kinetics and simulation of the imidization of poly(styrene-co-maleic anhydride) with amines. J Appl Polym Sci 100(4):2744–2749CrossRef Cao K, Huang Y, Liu HY (2006) Kinetics and simulation of the imidization of poly(styrene-co-maleic anhydride) with amines. J Appl Polym Sci 100(4):2744–2749CrossRef
26.
Zurück zum Zitat Ahmetli G, Yazicigil Z, Kocak A et al (2005) Effects of different molecular weights of polystyrene on the acylation reaction and on the reaction kinetics. J Appl Polym Sci 96(1):253–259CrossRef Ahmetli G, Yazicigil Z, Kocak A et al (2005) Effects of different molecular weights of polystyrene on the acylation reaction and on the reaction kinetics. J Appl Polym Sci 96(1):253–259CrossRef
27.
Zurück zum Zitat Terpugova P, Bui C, Chernikova E (2003) Effect of comonomer composition on the controlled free-radical copolymerization of styrene and maleic anhydride by reversible addition–fragmentation chain transfer (RAFT). Polymer 44(15):4101–4107CrossRef Terpugova P, Bui C, Chernikova E (2003) Effect of comonomer composition on the controlled free-radical copolymerization of styrene and maleic anhydride by reversible addition–fragmentation chain transfer (RAFT). Polymer 44(15):4101–4107CrossRef
28.
Zurück zum Zitat Kim MN, Lee IM, Park ES (2000) Living radical copolymerization of styrene/maleic anhydride. Polym Chem 28(12):2239–2244 Kim MN, Lee IM, Park ES (2000) Living radical copolymerization of styrene/maleic anhydride. Polym Chem 28(12):2239–2244
29.
Zurück zum Zitat Yu Y, Zhan X, Zhang Q et al (2011) Synthesis of triblock copolymer having alternating structures and kinetics study on RAFT-mediated bulk, miniemulsion and seed miniemulsion polymerizations. Polym Eng Sci 51(6):1041–1050CrossRef Yu Y, Zhan X, Zhang Q et al (2011) Synthesis of triblock copolymer having alternating structures and kinetics study on RAFT-mediated bulk, miniemulsion and seed miniemulsion polymerizations. Polym Eng Sci 51(6):1041–1050CrossRef
30.
Zurück zum Zitat Sayed WM (2008) Preparation of modified polystyrene with maleic anhydride in the presence of different solvents. J Appl Polym Sci 109(6):4099–4104CrossRef Sayed WM (2008) Preparation of modified polystyrene with maleic anhydride in the presence of different solvents. J Appl Polym Sci 109(6):4099–4104CrossRef
31.
Zurück zum Zitat Pietrafesa TR, Brandolin A, Sarmoria C et al (2023) A comprehensive Monte Carlo model of the grafting of maleic anhydride onto polypropylene with experimental validation. Macromol Theory Simul 32(5):2300018CrossRef Pietrafesa TR, Brandolin A, Sarmoria C et al (2023) A comprehensive Monte Carlo model of the grafting of maleic anhydride onto polypropylene with experimental validation. Macromol Theory Simul 32(5):2300018CrossRef
32.
Zurück zum Zitat Luciani CV, Choi KY (2021) Mathematical modeling of free radical solution terpolymerization reactions in a batch and continuous flow stirred tank reactors. Macromol Theory Simul 30(3):2000094CrossRef Luciani CV, Choi KY (2021) Mathematical modeling of free radical solution terpolymerization reactions in a batch and continuous flow stirred tank reactors. Macromol Theory Simul 30(3):2000094CrossRef
33.
Zurück zum Zitat Klumperman B, Heuts JP (2020) The solution copolymerization of styrene and maleic anhydride in a continuous stirred tank reactor and its theoretical modelling. Polymer 202:122730CrossRef Klumperman B, Heuts JP (2020) The solution copolymerization of styrene and maleic anhydride in a continuous stirred tank reactor and its theoretical modelling. Polymer 202:122730CrossRef
34.
Zurück zum Zitat Zou X, Zhao Q, Zhan Y et al (2022) Polymerization kinetics analysis of a thermostable, sequence-controllable polyamide polymer. J Mol Struct 1264:133286CrossRef Zou X, Zhao Q, Zhan Y et al (2022) Polymerization kinetics analysis of a thermostable, sequence-controllable polyamide polymer. J Mol Struct 1264:133286CrossRef
35.
Zurück zum Zitat Chitanu G, Carpov A, Cascaval CN (1996) On the thermal decomposition of copolymers of maleic anhydride with styrene. Thermochim Acta 275(2):225–233CrossRef Chitanu G, Carpov A, Cascaval CN (1996) On the thermal decomposition of copolymers of maleic anhydride with styrene. Thermochim Acta 275(2):225–233CrossRef
36.
Zurück zum Zitat Mitra S, Ranjith P, Muthukrishnan S (2018) High heat resistant blends of poly(methyl methacrylate) and styrenic copolymers via post reactor modification. J Appl Polym Sci 135(18):46220CrossRef Mitra S, Ranjith P, Muthukrishnan S (2018) High heat resistant blends of poly(methyl methacrylate) and styrenic copolymers via post reactor modification. J Appl Polym Sci 135(18):46220CrossRef
37.
Zurück zum Zitat Xiao L, Li Z, Dong J et al (2015) Fabrication of poly (methyl methacrylate-co-maleic anhydride) copolymers and their kinetic analysis of the thermal degradation. Colloid Polym Sci 293(10):2807–2813CrossRef Xiao L, Li Z, Dong J et al (2015) Fabrication of poly (methyl methacrylate-co-maleic anhydride) copolymers and their kinetic analysis of the thermal degradation. Colloid Polym Sci 293(10):2807–2813CrossRef
38.
Zurück zum Zitat Pıhtılı G, Biryan F (2021) Electrical investigation on Eu+3- doped copolymer composite system and conventional kinetic analysis. J Mol Struct 1230:129638CrossRef Pıhtılı G, Biryan F (2021) Electrical investigation on Eu+3- doped copolymer composite system and conventional kinetic analysis. J Mol Struct 1230:129638CrossRef
39.
Zurück zum Zitat Yao YZ, Li L, Zhang J (2006) Thermooxidative aging and kinetics of the thermooxidative degradation of ethylene – propylene – diene terpolymer-graft-maleic anhydride/calcium carbonate composites. J Appl Polym Sci 103(4):2575–2767 Yao YZ, Li L, Zhang J (2006) Thermooxidative aging and kinetics of the thermooxidative degradation of ethylene – propylene – diene terpolymer-graft-maleic anhydride/calcium carbonate composites. J Appl Polym Sci 103(4):2575–2767
40.
Zurück zum Zitat Pi-hui P, Xiu-fang W, Zhai-min W (2006) Analysis of most probable mechanism functions and thermal degradation kinetics of n-phenylmaleimide-styrene-maleic copolymers. Polym Polym Compos 15(5):343–414 Pi-hui P, Xiu-fang W, Zhai-min W (2006) Analysis of most probable mechanism functions and thermal degradation kinetics of n-phenylmaleimide-styrene-maleic copolymers. Polym Polym Compos 15(5):343–414
41.
Zurück zum Zitat Luo J, Cheng D, Li M et al (2020) RAFT Copolymerization of styrene and maleic anhydride with addition of ascorbic acid at ambient temperature. Adv Polym Technol 2020:1–8CrossRef Luo J, Cheng D, Li M et al (2020) RAFT Copolymerization of styrene and maleic anhydride with addition of ascorbic acid at ambient temperature. Adv Polym Technol 2020:1–8CrossRef
42.
Zurück zum Zitat Altun Ö, Koçer MÖ (2021) Spectral, kinetic and thermodynamic studies of Pd (II) with Schiff base derived from L-asparagine and furfuraldehyde in the presence of 8-hydroxyquinoline. J Mol Struct 1224:129242CrossRef Altun Ö, Koçer MÖ (2021) Spectral, kinetic and thermodynamic studies of Pd (II) with Schiff base derived from L-asparagine and furfuraldehyde in the presence of 8-hydroxyquinoline. J Mol Struct 1224:129242CrossRef
43.
Zurück zum Zitat Rahaman M, Khastgir D, Nayak L (2017) Thermal decomposition behavior and durability evaluation of thermotropic liquid crystalline polymers. J Appl Polym Sci 135(7):1–9 Rahaman M, Khastgir D, Nayak L (2017) Thermal decomposition behavior and durability evaluation of thermotropic liquid crystalline polymers. J Appl Polym Sci 135(7):1–9
44.
Zurück zum Zitat Li X, Han L, Zhang R et al (2022) Regulation from gradient to near periodic sequence during anionic copolymerization of styrene and dimethyl-[4-(1-phenyl-vinyl)phenyl]silane (DPE-SiH). Polymer 244:124663CrossRef Li X, Han L, Zhang R et al (2022) Regulation from gradient to near periodic sequence during anionic copolymerization of styrene and dimethyl-[4-(1-phenyl-vinyl)phenyl]silane (DPE-SiH). Polymer 244:124663CrossRef
45.
Zurück zum Zitat Bonilla-Cruz J, Guerrero-Sánchez C, Schubert US et al (2010) Controlled “Grafting-from” of poly[styrene-co-maleic anhydride] onto polydienes using nitroxide chemistry. Eur Polymer J 46(2):298–312CrossRef Bonilla-Cruz J, Guerrero-Sánchez C, Schubert US et al (2010) Controlled “Grafting-from” of poly[styrene-co-maleic anhydride] onto polydienes using nitroxide chemistry. Eur Polymer J 46(2):298–312CrossRef
46.
Zurück zum Zitat Hua Y, Liu J, Zhang J (2023) Constructing flame retardant silica nanoparticles through styrene maleic anhydride copolymer grafting for PC/ABS composites. Compos A Appl Sci Manuf 175:107825CrossRef Hua Y, Liu J, Zhang J (2023) Constructing flame retardant silica nanoparticles through styrene maleic anhydride copolymer grafting for PC/ABS composites. Compos A Appl Sci Manuf 175:107825CrossRef
47.
Zurück zum Zitat Mighri F, Ajji A, Fang H (2008) Effect of poly(styrene-co-maleic anhydride) imidization on the miscibility and phase-separation temperatures of poly(styrene-co-maleic anhydride)/poly(vinyl methyl ether) and poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. J Appl Polym Sci 109(6):3439–4129 Mighri F, Ajji A, Fang H (2008) Effect of poly(styrene-co-maleic anhydride) imidization on the miscibility and phase-separation temperatures of poly(styrene-co-maleic anhydride)/poly(vinyl methyl ether) and poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. J Appl Polym Sci 109(6):3439–4129
48.
Zurück zum Zitat Meng C, Xiucai L (2022) Study on thermal degradation kinetics of bio-based semi-aromatic high-temperature polyamide PA5T/56 and the effect of benzene ring. Iran Polym J 31(5):641–650CrossRef Meng C, Xiucai L (2022) Study on thermal degradation kinetics of bio-based semi-aromatic high-temperature polyamide PA5T/56 and the effect of benzene ring. Iran Polym J 31(5):641–650CrossRef
49.
Zurück zum Zitat Wang Y, Chai M, Li Y (2023) Pyrolysis kinetics and thermodynamic parameters of bamboo residues and its three main components using thermogravimetric analysis. Biomass Bioenerg 170:106705CrossRef Wang Y, Chai M, Li Y (2023) Pyrolysis kinetics and thermodynamic parameters of bamboo residues and its three main components using thermogravimetric analysis. Biomass Bioenerg 170:106705CrossRef
50.
Zurück zum Zitat Paik P, Kar KK (2009) Thermal degradation kinetics and estimation of lifetime of polyethylene particles: effects of particle size. Mater Chem Phys 113(2–3):953–961CrossRef Paik P, Kar KK (2009) Thermal degradation kinetics and estimation of lifetime of polyethylene particles: effects of particle size. Mater Chem Phys 113(2–3):953–961CrossRef
51.
Zurück zum Zitat Chen H, Zhu S, Zhou R et al (2022) Thermal degradation behavior of thiol-ene composites loaded with a novel silicone flame retardant. Polymers 14(20):4335PubMedPubMedCentralCrossRef Chen H, Zhu S, Zhou R et al (2022) Thermal degradation behavior of thiol-ene composites loaded with a novel silicone flame retardant. Polymers 14(20):4335PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Tang W, Li XG, Yan D (2004) Thermal decomposition kinetics of thermotropic copolyesters made from trans-p-hydroxycinnamic acid and p-hydroxybenzoic acid. J Appl Polym Sci 91(1):445–454CrossRef Tang W, Li XG, Yan D (2004) Thermal decomposition kinetics of thermotropic copolyesters made from trans-p-hydroxycinnamic acid and p-hydroxybenzoic acid. J Appl Polym Sci 91(1):445–454CrossRef
53.
Zurück zum Zitat Sava I, Damaceanu MD, Constantin CP et al (2018) Structure – promoted high performance properties of triphenylmethane - containing polyimides and copolyimides. Eur Polymer J 108:554–569CrossRef Sava I, Damaceanu MD, Constantin CP et al (2018) Structure – promoted high performance properties of triphenylmethane - containing polyimides and copolyimides. Eur Polymer J 108:554–569CrossRef
54.
Zurück zum Zitat Peng WF, Lei HY, Zhang XX et al (2022) Fluorine substitution effect on the material properties in transparent aromatic polyimides. Chin J Polym Sci 40(7):781–788CrossRef Peng WF, Lei HY, Zhang XX et al (2022) Fluorine substitution effect on the material properties in transparent aromatic polyimides. Chin J Polym Sci 40(7):781–788CrossRef
Metadaten
Titel
Effect of para-substituent on copolymerization and thermal degradation kinetics of styrene copolymers composed with maleic anhydride derivative
verfasst von
Changlei Yang
Yanping Wang
Yufei Liu
Jun Qin
Min He
Shuhao Qin
Jie Yu
Publikationsdatum
01.04.2024
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 4/2024
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-024-03945-1

Weitere Artikel der Ausgabe 4/2024

Journal of Polymer Research 4/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.