Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 5/2017

25.02.2017 | Original Paper

Enzymatic hydrolysis of thermochemically pretreated biomass using a mixture of cellulolytic enzymes produced from different fungal sources

verfasst von: Shivani Sharma, Arindam Kuila, Vinay Sharma

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Enzymatic hydrolysis of pretreated lignocellulosic raw material is one of the major steps in the biofuel production. In this study, sorghum straw was pretreated under previously optimized conditions (using 0.5 M sodium hydroxide, 8% substrate concentration, 120 °C temperature and 20 min of incubation time). Cellulase enzymes were produced using three different fungal sources (Aspergillus niger, Fusarium oxysporum and Trichoderma harzianum). Enzymatic hydrolysis of pretreated biomass was carried out using individual and different mixture of cellulases. Maximum reducing sugar yield was obtained when an equal mixture of three different cellulases was used. The enzymatic hydrolysis process was optimized through central composite design based on response surface methodology using an equal mixture of three different cellulases (1:1:1). The data showed that maximum reducing sugar yield of 464.2 mg/g dry substrate was obtained at 10% substrate concentration, 55 °C and after 48 h of incubation. Further, batch (a process where all the substrates were fed into the bioreactor at the beginning of the reaction) and fed-batch (a process where substrates were fed into the bioreactor at specific time intervals) process of enzymatic hydrolysis were compared at high substrate concentration (20%). The results showed that an increase in reducing sugar yield (355.6 mg/g dry substrate) was obtained in case of fed-batch enzymatic hydrolysis as compared to batch enzymatic hydrolysis (285.3 mg/g dry substrate) process. The above results can be useful for efficient hydrolysis of lignocellulosic biomass and cost-effective biofuel production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adsul M, Sharma B, Singhania RR, Saini JK, Sharma A, Mathur A, Gupta R, Tuli DK (2014) Blending of cellulolytic enzyme preparations from different fungal sources for improved cellulose hydrolysis by increasing synergism. RSC Adv 4:44726–44732CrossRef Adsul M, Sharma B, Singhania RR, Saini JK, Sharma A, Mathur A, Gupta R, Tuli DK (2014) Blending of cellulolytic enzyme preparations from different fungal sources for improved cellulose hydrolysis by increasing synergism. RSC Adv 4:44726–44732CrossRef
Zurück zum Zitat Anjum MF, Tasadduq I, Al-Sultan K (1997) Response surface methodology: a neural network approach. Eur J Oper Res 101:65–73CrossRef Anjum MF, Tasadduq I, Al-Sultan K (1997) Response surface methodology: a neural network approach. Eur J Oper Res 101:65–73CrossRef
Zurück zum Zitat Badhan A, Wang Y, Gruninger R, Patton D, Powlowski J, Tsang A, McAllister T (2014) Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases. BMC Biotechnol 14:1–14CrossRef Badhan A, Wang Y, Gruninger R, Patton D, Powlowski J, Tsang A, McAllister T (2014) Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases. BMC Biotechnol 14:1–14CrossRef
Zurück zum Zitat Cai D, Li P, Luo Z, Qin P, Chen C, Wang Y, Wang Z, Tan T (2016) Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone–butanol–ethanol fermentation. Bioresour Technol 211:117–124CrossRef Cai D, Li P, Luo Z, Qin P, Chen C, Wang Y, Wang Z, Tan T (2016) Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone–butanol–ethanol fermentation. Bioresour Technol 211:117–124CrossRef
Zurück zum Zitat Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15CrossRef Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:1–15CrossRef
Zurück zum Zitat Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuel 6:8CrossRef Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuel 6:8CrossRef
Zurück zum Zitat Cotana F, Barbanera M, Foschini D, Lascaro E, Buratti C (2015) Preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning. Energy Proc 82:389–394CrossRef Cotana F, Barbanera M, Foschini D, Lascaro E, Buratti C (2015) Preliminary optimization of alkaline pretreatment for ethanol production from vineyard pruning. Energy Proc 82:389–394CrossRef
Zurück zum Zitat Fakhriyan G, Mousavi HZ, Sajjadi SM (2016) Speciation and determination of Cr(III) and Cr(VI) by directly suspended droplet microextraction coupled with flame atomic absorption spectrometry: an application of central composite design strategy as an experimental design tool. Anal Methods 8:5070–5078CrossRef Fakhriyan G, Mousavi HZ, Sajjadi SM (2016) Speciation and determination of Cr(III) and Cr(VI) by directly suspended droplet microextraction coupled with flame atomic absorption spectrometry: an application of central composite design strategy as an experimental design tool. Anal Methods 8:5070–5078CrossRef
Zurück zum Zitat Ge X, Burner DM, Xu J, Phillips GC, Sivakumar G (2011) Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Biotechnol J 6:66–73CrossRef Ge X, Burner DM, Xu J, Phillips GC, Sivakumar G (2011) Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Biotechnol J 6:66–73CrossRef
Zurück zum Zitat Gupta R, Kumar S, Gomes J, Kuhad RC (2012) Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol. Biotechnol Biofuel 5:1–10CrossRef Gupta R, Kumar S, Gomes J, Kuhad RC (2012) Kinetic study of batch and fed-batch enzymatic saccharification of pretreated substrate and subsequent fermentation to ethanol. Biotechnol Biofuel 5:1–10CrossRef
Zurück zum Zitat Jeya M, Zhang YW, Kim IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol 100:5155–5161CrossRef Jeya M, Zhang YW, Kim IW, Lee JK (2009) Enhanced saccharification of alkali-treated rice straw by cellulase from Trametes hirsuta and statistical optimization of hydrolysis conditions by RSM. Bioresour Technol 100:5155–5161CrossRef
Zurück zum Zitat Karapatsia A, Pappas I, Penloglou G, Kotrotsiou O, Kiparissides C (2016) Optimization of dilute acid pretreatment and enzymatic hydrolysis of Phalaris aquatica L. lignocellulosic biomass in batch and fed-batch processes. Bioenerg Res. doi:10.1007/s12155-016-9793-4 Karapatsia A, Pappas I, Penloglou G, Kotrotsiou O, Kiparissides C (2016) Optimization of dilute acid pretreatment and enzymatic hydrolysis of Phalaris aquatica L. lignocellulosic biomass in batch and fed-batch processes. Bioenerg Res. doi:10.​1007/​s12155-016-9793-4
Zurück zum Zitat Keharom S, Mahachai R, Chanthai S (2016) The optimization study of α-amylase activity based on central composite design-response surface methodology by dinitrosalicylic acid method. Int Food Res J 23:10–17 Keharom S, Mahachai R, Chanthai S (2016) The optimization study of α-amylase activity based on central composite design-response surface methodology by dinitrosalicylic acid method. Int Food Res J 23:10–17
Zurück zum Zitat Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioenerg 109:1083–1087CrossRef Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioenerg 109:1083–1087CrossRef
Zurück zum Zitat Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocelluloses. Biotechnol Biofuels 2:11CrossRef Kristensen JB, Felby C, Jørgensen H (2009) Yield-determining factors in high-solids enzymatic hydrolysis of lignocelluloses. Biotechnol Biofuels 2:11CrossRef
Zurück zum Zitat Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R (2011) Production of ethanol from lignocellulosics: an enzymatic venture. EXCLI J 10:85–96 Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R (2011) Production of ethanol from lignocellulosics: an enzymatic venture. EXCLI J 10:85–96
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729CrossRef
Zurück zum Zitat Li C, Lin F, Li Y, Wei W, Wang H, Qin L, Zhou Z, Li B, Wu F, Chen Z (2016a) A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microb Cell Fact 15:151CrossRef Li C, Lin F, Li Y, Wei W, Wang H, Qin L, Zhou Z, Li B, Wu F, Chen Z (2016a) A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microb Cell Fact 15:151CrossRef
Zurück zum Zitat Li Y, Liu C, Bai F, Zhao X (2016b) Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour Technol 216:503–510CrossRef Li Y, Liu C, Bai F, Zhao X (2016b) Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour Technol 216:503–510CrossRef
Zurück zum Zitat Liguori R, Ionata E, Marcolongo L, Vandenberghe LPS, Cara FL, Faraco V (2015) Optimization of Arundo donax saccharification by (hemi)cellulolytic enzymes from Pleurotus ostreatus. Biomed Res Int 2015:1–14 Liguori R, Ionata E, Marcolongo L, Vandenberghe LPS, Cara FL, Faraco V (2015) Optimization of Arundo donax saccharification by (hemi)cellulolytic enzymes from Pleurotus ostreatus. Biomed Res Int 2015:1–14
Zurück zum Zitat Lü JL, Zhao PJ (2011) Optimal conditions for maximizing production of reducing sugars from microwave-assisted FeCl3 pretreated rice straw degraded by Trichoderma viride and Bacillus pumilus. Afr J Microbiol Res 5:5757–5764 Lü JL, Zhao PJ (2011) Optimal conditions for maximizing production of reducing sugars from microwave-assisted FeCl3 pretreated rice straw degraded by Trichoderma viride and Bacillus pumilus. Afr J Microbiol Res 5:5757–5764
Zurück zum Zitat Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRef Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRef
Zurück zum Zitat Mkhize T, Mthembu LD, Gupta R, Kaur A, Kuhad RC, Reddy P, Deenadayalu N (2016) Enzymatic saccharification of acid/alkali pre-treated, mill-run, and depithed sugarcane bagasse. Bioresour 11:6267–6285CrossRef Mkhize T, Mthembu LD, Gupta R, Kaur A, Kuhad RC, Reddy P, Deenadayalu N (2016) Enzymatic saccharification of acid/alkali pre-treated, mill-run, and depithed sugarcane bagasse. Bioresour 11:6267–6285CrossRef
Zurück zum Zitat Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Process 1:15CrossRef Mohanram S, Amat D, Choudhary J, Arora A, Nain L (2013) Novel perspectives for evolving enzyme cocktails for lignocellulose hydrolysis in biorefineries. Sustain Chem Process 1:15CrossRef
Zurück zum Zitat Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. Wiley, New York Myers RH, Montgomery DC (1995) Response surface methodology: process and product optimization using designed experiments. Wiley, New York
Zurück zum Zitat Nathan VK, Rani ME, Rathinasamy G, Dhiraviam KN, Jayavel S (2014) Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3. SpringerPlus 3:1–12CrossRef Nathan VK, Rani ME, Rathinasamy G, Dhiraviam KN, Jayavel S (2014) Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3. SpringerPlus 3:1–12CrossRef
Zurück zum Zitat Pandiyan K, Tiwari R, Rana S, Arora A, Singh S, Saxena AK, Nain L (2014) Comparative efficiency of different pretreatment methods on enzymatic digestibility of Parthenium sp. World J Microbiol Biotechnol 30:55–64CrossRef Pandiyan K, Tiwari R, Rana S, Arora A, Singh S, Saxena AK, Nain L (2014) Comparative efficiency of different pretreatment methods on enzymatic digestibility of Parthenium sp. World J Microbiol Biotechnol 30:55–64CrossRef
Zurück zum Zitat Saha BC, Cotta MA (2008) Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenerg 32:971–977CrossRef Saha BC, Cotta MA (2008) Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenerg 32:971–977CrossRef
Zurück zum Zitat Saini JK, Adsul M, Singhania RR, Satlewal A, Saini R, Gupta R, Mathur A, Tuli DK (2016) Improvement of wheat straw hydrolysis by Cellulolytic blends of two Penicillium spp. Renew Energy 98:43–50CrossRef Saini JK, Adsul M, Singhania RR, Satlewal A, Saini R, Gupta R, Mathur A, Tuli DK (2016) Improvement of wheat straw hydrolysis by Cellulolytic blends of two Penicillium spp. Renew Energy 98:43–50CrossRef
Zurück zum Zitat Sharma S, Sharma V, Kuila A (2016) Cellulase production using natural medium and its application on enzymatic hydrolysis of thermo chemically pretreated biomass. 3 Biotech 6:1–11 Sharma S, Sharma V, Kuila A (2016) Cellulase production using natural medium and its application on enzymatic hydrolysis of thermo chemically pretreated biomass. 3 Biotech 6:1–11
Zurück zum Zitat Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82CrossRef Sindhu R, Binod P, Pandey A (2016) Biological pretreatment of lignocellulosic biomass—an overview. Bioresour Technol 199:76–82CrossRef
Zurück zum Zitat Taherzadeh M, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRef Taherzadeh M, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651CrossRef
Zurück zum Zitat Takimura O, Yanagida T, Fujimoto S, Minowa T (2013) Estimation of bioethanol production cost from rice straw by on-site enzyme production. J JPA Pet Inst 56:150–155CrossRef Takimura O, Yanagida T, Fujimoto S, Minowa T (2013) Estimation of bioethanol production cost from rice straw by on-site enzyme production. J JPA Pet Inst 56:150–155CrossRef
Zurück zum Zitat Vintila T, Dragomirescu M, Croitoriu V, Vintila C, Barbu H, Sand C (2010) Saccharification of lignocellulose—with reference to Miscanthus—using different cellulases. Rom Biotech Lett 15:5498–5504 Vintila T, Dragomirescu M, Croitoriu V, Vintila C, Barbu H, Sand C (2010) Saccharification of lignocellulose—with reference to Miscanthus—using different cellulases. Rom Biotech Lett 15:5498–5504
Zurück zum Zitat Xu G, Liang C, HuangP Liu Q, Xu Y, Ding C, Li T (2016) Optimization of rice lipid production from ultrasound-assisted extraction by response surface methodology. J Cereal Sci 70:23–28CrossRef Xu G, Liang C, HuangP Liu Q, Xu Y, Ding C, Li T (2016) Optimization of rice lipid production from ultrasound-assisted extraction by response surface methodology. J Cereal Sci 70:23–28CrossRef
Zurück zum Zitat Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-depth investigation of biomass pyrolysis based on the three major components: hemicellulose, cellulose and lignin. Energy Fuel 20:388–393CrossRef Yang H, Yan R, Chen H, Zheng C, Lee DH, Liang DT (2006) In-depth investigation of biomass pyrolysis based on the three major components: hemicellulose, cellulose and lignin. Energy Fuel 20:388–393CrossRef
Metadaten
Titel
Enzymatic hydrolysis of thermochemically pretreated biomass using a mixture of cellulolytic enzymes produced from different fungal sources
verfasst von
Shivani Sharma
Arindam Kuila
Vinay Sharma
Publikationsdatum
25.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 5/2017
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-017-1346-9

Weitere Artikel der Ausgabe 5/2017

Clean Technologies and Environmental Policy 5/2017 Zur Ausgabe