Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 6/2020

19.06.2020 | Original Paper

Experimental study of a liquid desiccant regeneration system: performance analysis for high feed concentrations

verfasst von: Nirmalya Datta, Zilong Zhuang, Wei Qin

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Liquid desiccant air-conditioning is an energy-efficient alternative to conventional vapor compression systems due to its ability to handle sensible and latent heat loads independently. Membrane-based processes are prevalent in desalination research due to their superior abilities to separate fluids. The membrane-assisted separation process is also suitable for use in liquid desiccant air-conditioning systems as it can minimize the problems of corrosion, which has so far prevented the widespread use of liquid desiccant systems. In this study, we have utilized the flat-sheet polytetrafluoroethylene membranes for liquid–vapor separation and combined multieffect design with vacuum conditions, for enhanced liquid–vapor separation across the membrane. Preliminary experiments and literature surveys indicate that the conventional vacuum multieffect membrane distillation system exhibits poor performance when the feed concentration is above 26%. Therefore, efforts are made to enhance its performance when operating at higher concentrations (30% and 34%) by employing flat-plate-type heat exchangers to preheat the liquid desiccant and by maintaining high air-side vacuum. The regeneration process can be optimized based on increase in concentration (ΔC) and performance ratio (PR), by controlling the operating conditions. The evaluations of the regenerator performance for different operating parameters including heat source temperature, circulation cross-flow rate are presented along with analysis. Preheating the LiCl solution before regeneration resulted in improved performance; PR of 0.58 and ΔC of 2.4% are achieved for 34% LiCl concentration.

Graphic abstract

Schematic representation of the membrane-assisted LDAC test bed

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdel-Salam AH, Ge G, Simonson CJ (2013) Performance analysis of a membrane liquid desiccant air-conditioning system. Energy Build 62:559–569CrossRef Abdel-Salam AH, Ge G, Simonson CJ (2013) Performance analysis of a membrane liquid desiccant air-conditioning system. Energy Build 62:559–569CrossRef
Zurück zum Zitat Abdel-Salam MR, Ge G, Fauchoux M, Besant RW, Simonson CJ (2014) State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): a comprehensive review. Renew Sustain Energy Rev 39:700–728CrossRef Abdel-Salam MR, Ge G, Fauchoux M, Besant RW, Simonson CJ (2014) State-of-the-art in liquid-to-air membrane energy exchangers (LAMEEs): a comprehensive review. Renew Sustain Energy Rev 39:700–728CrossRef
Zurück zum Zitat AIL. Research INC. (n.d.). Patent No. 7,269,966. US AIL. Research INC. (n.d.). Patent No. 7,269,966. US
Zurück zum Zitat Bakhtiar A, Rokhman F, Choi KH (2012) A novel method to evaluate the performance of liquid desiccant air dehumidifier system. Energy Build 44:39–44CrossRef Bakhtiar A, Rokhman F, Choi KH (2012) A novel method to evaluate the performance of liquid desiccant air dehumidifier system. Energy Build 44:39–44CrossRef
Zurück zum Zitat Bichowsky FR, Kelley GA (1935) Concentrated solutions in air-conditioning. Ind Eng Chem 27(8):879–882CrossRef Bichowsky FR, Kelley GA (1935) Concentrated solutions in air-conditioning. Ind Eng Chem 27(8):879–882CrossRef
Zurück zum Zitat Choo FH, KumJa M, Zhao K, Chakraborty A, Dass ETM, Prabu M, Li B, Dubey S (2014) Experimental study on the performance of membrane based multi-effect dehumidifier regenerator powered by solar energy. Energy Procedia 48:535–542CrossRef Choo FH, KumJa M, Zhao K, Chakraborty A, Dass ETM, Prabu M, Li B, Dubey S (2014) Experimental study on the performance of membrane based multi-effect dehumidifier regenerator powered by solar energy. Energy Procedia 48:535–542CrossRef
Zurück zum Zitat Datta N, Chakraborty A (2016) Experimental investigation of a multi effect membrane based regenerator for high concentration aqueous LiCL solution as desiccant. In: Proceedings of the world congress on momentum, heat and mass transfer (MHMT’16), (页 ENFHT 111). Prague, Czech Republic. https://doi.org/10.11159/enfht16.111 Datta N, Chakraborty A (2016) Experimental investigation of a multi effect membrane based regenerator for high concentration aqueous LiCL solution as desiccant. In: Proceedings of the world congress on momentum, heat and mass transfer (MHMT’16), (页 ENFHT 111). Prague, Czech Republic. https://​doi.​org/​10.​11159/​enfht16.​111
Zurück zum Zitat Datta N, Chakraborty A, Ali SM, Choo FH (2017) Experimental investigation of multi-effect regenerator for desiccant dehumidifier: effects of various regeneration temperatures and solution flow rates on system performances. Int J Refrig 76:7–18CrossRef Datta N, Chakraborty A, Ali SM, Choo FH (2017) Experimental investigation of multi-effect regenerator for desiccant dehumidifier: effects of various regeneration temperatures and solution flow rates on system performances. Int J Refrig 76:7–18CrossRef
Zurück zum Zitat Duong HC, Al-Jubainawi HA, He ZMT, Nghiem LD (2017) Liquid desiccant lithium chloride regeneration by membrane distillation for air conditioning. Sep Purif Technol 177:121–128CrossRef Duong HC, Al-Jubainawi HA, He ZMT, Nghiem LD (2017) Liquid desiccant lithium chloride regeneration by membrane distillation for air conditioning. Sep Purif Technol 177:121–128CrossRef
Zurück zum Zitat Emmott P (1965) A concentration-cell method for the determination of trace amounts of chloride in solutions of lithium salts. The Analyst 90(1073):482CrossRef Emmott P (1965) A concentration-cell method for the determination of trace amounts of chloride in solutions of lithium salts. The Analyst 90(1073):482CrossRef
Zurück zum Zitat Gommed K, Grossman G (2004) A liquid desiccant system for solar cooling and dehumidification. Sol Energy 126:879–885CrossRef Gommed K, Grossman G (2004) A liquid desiccant system for solar cooling and dehumidification. Sol Energy 126:879–885CrossRef
Zurück zum Zitat Gommed K, Grossman G (2007) Experimental investigation liquid desiccant system for solar cooling and dehumidification. Sol Energy 81:131–138CrossRef Gommed K, Grossman G (2007) Experimental investigation liquid desiccant system for solar cooling and dehumidification. Sol Energy 81:131–138CrossRef
Zurück zum Zitat Liu XH (2004) Combined cogeneration and liquid-desiccant system applied in a demonstration building. Energy Build 36(9):945–953CrossRef Liu XH (2004) Combined cogeneration and liquid-desiccant system applied in a demonstration building. Energy Build 36(9):945–953CrossRef
Zurück zum Zitat Longo GA, Gasparella A (2005) Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant. Int J Heat Mass Transf 48:5240–5254CrossRef Longo GA, Gasparella A (2005) Experimental and theoretical analysis of heat and mass transfer in a packed column dehumidifier/regenerator with liquid desiccant. Int J Heat Mass Transf 48:5240–5254CrossRef
Zurück zum Zitat Mahmud K, Mahmood GI, Simonson CJ, Besant RW (2010) Performance testing of a counter-cross-flow run-around membrane energy exchanger (RAMEE) system for HVAC applications. Energy Build 42:1139–1147CrossRef Mahmud K, Mahmood GI, Simonson CJ, Besant RW (2010) Performance testing of a counter-cross-flow run-around membrane energy exchanger (RAMEE) system for HVAC applications. Energy Build 42:1139–1147CrossRef
Zurück zum Zitat Nimmo BG, Collier RK Jr, Rengarajan K (1993) Desiccant enhancement of cooling based dehumidification. ASHRAE Trans 99:842–848 Nimmo BG, Collier RK Jr, Rengarajan K (1993) Desiccant enhancement of cooling based dehumidification. ASHRAE Trans 99:842–848
Zurück zum Zitat Reyna JL, Chester MV (2017) Energy efficiency to reduce residential electricity and natural gas use under climate change. Nat Commun 8:1–12CrossRef Reyna JL, Chester MV (2017) Energy efficiency to reduce residential electricity and natural gas use under climate change. Nat Commun 8:1–12CrossRef
Zurück zum Zitat Singh D, Sirkar KK (2014) High temperature direct contact membrane distillation based desalination using PTFE hollow fibers. Chem Eng Sci 116:824–833CrossRef Singh D, Sirkar KK (2014) High temperature direct contact membrane distillation based desalination using PTFE hollow fibers. Chem Eng Sci 116:824–833CrossRef
Zurück zum Zitat Wang S, Wang Y (2016) Investigation of the through plane effective oxygen diffusivity in the porous media of PEM fuel cells: effects of the pore size distribution and water saturation distribution. Int J Heat Mass Transf 98:541–549CrossRef Wang S, Wang Y (2016) Investigation of the through plane effective oxygen diffusivity in the porous media of PEM fuel cells: effects of the pore size distribution and water saturation distribution. Int J Heat Mass Transf 98:541–549CrossRef
Zurück zum Zitat Wang J, Wu J, Wang H (2015) Experimental investigation of a dual-source powered absorption chiller based on gas engine waste heat and solar thermal energy. Energy 88:680–689CrossRef Wang J, Wu J, Wang H (2015) Experimental investigation of a dual-source powered absorption chiller based on gas engine waste heat and solar thermal energy. Energy 88:680–689CrossRef
Zurück zum Zitat Yamaguchi S, Jeong J, Saito K, Miyauchi H, Harada M (2011) Hybrid liquid desiccant air-conditioning system: experiments and simulations. Appl Therm Eng 31:3741–3747CrossRef Yamaguchi S, Jeong J, Saito K, Miyauchi H, Harada M (2011) Hybrid liquid desiccant air-conditioning system: experiments and simulations. Appl Therm Eng 31:3741–3747CrossRef
Zurück zum Zitat Zaytsev ID, Aseyev GG (1992) Properties of aqueous solutions of electrolytes. CRC Press, Boca Raton Zaytsev ID, Aseyev GG (1992) Properties of aqueous solutions of electrolytes. CRC Press, Boca Raton
Zurück zum Zitat Zuo J, Chung TS, OBrien GS, Kosar W (2017) Hydrophobic/hydrophilic PVDF/Ultem® dual-layer hollow fiber membranes with enhanced mechanical properties for vacuum membrane distillation. J Memb Sci 523:103–110CrossRef Zuo J, Chung TS, OBrien GS, Kosar W (2017) Hydrophobic/hydrophilic PVDF/Ultem® dual-layer hollow fiber membranes with enhanced mechanical properties for vacuum membrane distillation. J Memb Sci 523:103–110CrossRef
Metadaten
Titel
Experimental study of a liquid desiccant regeneration system: performance analysis for high feed concentrations
verfasst von
Nirmalya Datta
Zilong Zhuang
Wei Qin
Publikationsdatum
19.06.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 6/2020
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-020-01851-w

Weitere Artikel der Ausgabe 6/2020

Clean Technologies and Environmental Policy 6/2020 Zur Ausgabe

Sustainability Perspectives on Lithium-ion Batteries

Sustainability perspectives on lithium-ion batteries