Skip to main content
Erschienen in: Flow, Turbulence and Combustion 4/2024

28.03.2024 | Research

Exploring the Potential and the Practical Usability of a Machine Learning Approach for Improving Wall Friction Predictions of RANS Wall Functions in Non-equilibrium Turbulent Flows

verfasst von: Erwan Rondeaux, Adèle Poubeau, Christian Angelberger, Miguel Munoz Zuniga, Damien Aubagnac-Karkar, Roberto Paoli

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A data-driven wall function estimation approach is proposed, aimed at accounting for non-equilibrium effects in turbulent boundary layers in RANS simulations of wall bounded flows. While keeping key simplifying hypothesis of standard wall functions and their general structure, the law-of-the-wall is replaced by a fully connected feed-forward neural network. The latter is trained to infer wall friction from the local flow state at the first of-wall nodes, described by an extended set of flow variables and gradients. For this purpose, the neural network is trained on high-fidelity wall resolved simulation data. It is then applied to formulate two different wall functions trained on high-fidelity data: a backward-facing step and a round jet impacting a flat wall. After integration into an industrial CFD code, they are applied to perform RANS simulations of the flow configurations they were trained for, and are shown to yield a largely improved prediction of wall friction as compared to standard wall functions. Finally, key issues related to the practical usability in RANS applications of the proposed data-driven approach are critically discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Beck, A., Flad, D., Munz, C.D.: Deep neural networks for data-driven les closure models. J. Comput. Phys. 398, 108910 (2019)MathSciNetCrossRef Beck, A., Flad, D., Munz, C.D.: Deep neural networks for data-driven les closure models. J. Comput. Phys. 398, 108910 (2019)MathSciNetCrossRef
Zurück zum Zitat Bin, Y., Park, G.I., Lv, Y., Yang, X.I.A: Large-Eddy Simulation of Separated Flows on Unconventionally Coarse Grids. Proceedings of the ASME 2023 International Mechanical Engineering Congress and Exposition. Volume 9: Fluids Engineering. New Orleans, Louisiana, USA. October 29–November 2, 2023. V009T10A018. ASME. https://doi.org/10.1115/IMECE2023-116879 Bin, Y., Park, G.I., Lv, Y., Yang, X.I.A: Large-Eddy Simulation of Separated Flows on Unconventionally Coarse Grids. Proceedings of the ASME 2023 International Mechanical Engineering Congress and Exposition. Volume 9: Fluids Engineering. New Orleans, Louisiana, USA. October 29–November 2, 2023. V009T10A018. ASME. https://​doi.​org/​10.​1115/​IMECE2023-116879
Zurück zum Zitat Brenner, M.P., Eldredge, J.D., Freund, J.B.: Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids 4(10), 1 (2019)CrossRef Brenner, M.P., Eldredge, J.D., Freund, J.B.: Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids 4(10), 1 (2019)CrossRef
Zurück zum Zitat Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52(1), 477–508 (2020)MathSciNetCrossRef Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52(1), 477–508 (2020)MathSciNetCrossRef
Zurück zum Zitat Calzolari, G., Liu, W.: Deep learning to replace, improve, or aid CFD analysis in built environment applications: a review. Build. Environ. 206, 108315 (2021)CrossRef Calzolari, G., Liu, W.: Deep learning to replace, improve, or aid CFD analysis in built environment applications: a review. Build. Environ. 206, 108315 (2021)CrossRef
Zurück zum Zitat Cheng, C., Zhang, G.T.: Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems. Water 13, 25 (2021)CrossRef Cheng, C., Zhang, G.T.: Deep learning method based on physics informed neural network with resnet block for solving fluid flow problems. Water 13, 25 (2021)CrossRef
Zurück zum Zitat Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24(1), 011702 (2012)CrossRef Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24(1), 011702 (2012)CrossRef
Zurück zum Zitat Duraisamy, K., Iaccarino, G., Xiao, H.: Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51(1), 357–377 (2019)MathSciNetCrossRef Duraisamy, K., Iaccarino, G., Xiao, H.: Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51(1), 357–377 (2019)MathSciNetCrossRef
Zurück zum Zitat Ferdian, E., Suinesiaputra, A., Dubowitz, D.J., et al.: 4DFlowNet: super-resolution 4D flow MRI using deep learning and computational fluid dynamics. Front. Phys. 8, 486 (2020)CrossRef Ferdian, E., Suinesiaputra, A., Dubowitz, D.J., et al.: 4DFlowNet: super-resolution 4D flow MRI using deep learning and computational fluid dynamics. Front. Phys. 8, 486 (2020)CrossRef
Zurück zum Zitat Grenouilloux, A., Balarac, G., Leparoux, J., et al.: On the use of kinetic-energy balance for the feature-based mesh adaptation applied to large eddy simulation in complex geometries. In: Proceedings ASME Turbo Expo (2022) Grenouilloux, A., Balarac, G., Leparoux, J., et al.: On the use of kinetic-energy balance for the feature-based mesh adaptation applied to large eddy simulation in complex geometries. In: Proceedings ASME Turbo Expo (2022)
Zurück zum Zitat Grenouilloux, A., Moureau, V., Lartigue, G., et al.: Feature-based mesh adaptation applied to the large eddy simulation of multiple jets impinging on a surface. In: Proceedings UK Heat Transfer Conference (2021) Grenouilloux, A., Moureau, V., Lartigue, G., et al.: Feature-based mesh adaptation applied to the large eddy simulation of multiple jets impinging on a surface. In: Proceedings UK Heat Transfer Conference (2021)
Zurück zum Zitat Güemes, A., Discetti, S., Ianiro, A., et al.: From coarse wall measurements to turbulent velocity fields through deep learning. Phys. Fluids 33(7), 075121 (2021)CrossRef Güemes, A., Discetti, S., Ianiro, A., et al.: From coarse wall measurements to turbulent velocity fields through deep learning. Phys. Fluids 33(7), 075121 (2021)CrossRef
Zurück zum Zitat Guo, M., Hesthaven, J.S.: Reduced order modeling for nonlinear structural analysis using gaussian process regression. Comput. Methods Appl. Mech. Eng. 341, 807–826 (2018)MathSciNetCrossRef Guo, M., Hesthaven, J.S.: Reduced order modeling for nonlinear structural analysis using gaussian process regression. Comput. Methods Appl. Mech. Eng. 341, 807–826 (2018)MathSciNetCrossRef
Zurück zum Zitat Guo, M., Hesthaven, J.S.: Data-driven reduced order modeling for time-dependent problems. Comput. Methods Appl. Mech. Eng. 345, 75–99 (2019)MathSciNetCrossRef Guo, M., Hesthaven, J.S.: Data-driven reduced order modeling for time-dependent problems. Comput. Methods Appl. Mech. Eng. 345, 75–99 (2019)MathSciNetCrossRef
Zurück zum Zitat Hasegawa, K., Fukami, K., Murata, T., et al.: Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes. Theoret. Comput. Fluid Dyn. 55(12), 4013 (2020)MathSciNet Hasegawa, K., Fukami, K., Murata, T., et al.: Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes. Theoret. Comput. Fluid Dyn. 55(12), 4013 (2020)MathSciNet
Zurück zum Zitat Huang, X.L.D., Yang, X.I.A., Kunz, R.F.: Wall-modeled large eddy simulation of spanwise rotating turbulent channels-comparing a physics-based approach and a data-based approach. Phys. Fluids 31(12), 125105 (2019)CrossRef Huang, X.L.D., Yang, X.I.A., Kunz, R.F.: Wall-modeled large eddy simulation of spanwise rotating turbulent channels-comparing a physics-based approach and a data-based approach. Phys. Fluids 31(12), 125105 (2019)CrossRef
Zurück zum Zitat Jiang, C., Mi, J., Laima, S., et al.: A novel algebraic stress model with machine-learning-assisted parameterization. Energies 13(1), 258 (2020)CrossRef Jiang, C., Mi, J., Laima, S., et al.: A novel algebraic stress model with machine-learning-assisted parameterization. Energies 13(1), 258 (2020)CrossRef
Zurück zum Zitat Joshi, A., Assam, A., Nived, M.R., et al.: A generalised wall function including compressibility and pressure-gradient terms for the Spalart–Allmaras turbulence model. J. Turbul. 20(10), 626–660 (2019)MathSciNetCrossRef Joshi, A., Assam, A., Nived, M.R., et al.: A generalised wall function including compressibility and pressure-gradient terms for the Spalart–Allmaras turbulence model. J. Turbul. 20(10), 626–660 (2019)MathSciNetCrossRef
Zurück zum Zitat Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations, San Diego, p. 15 (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference for Learning Representations, San Diego, p. 15 (2015)
Zurück zum Zitat Ling, J., Jones, R., Templeton, J.: Machine learning strategies for systems with invariance properties. J. Comput. Phys. 318, 22–35 (2016)MathSciNetCrossRef Ling, J., Jones, R., Templeton, J.: Machine learning strategies for systems with invariance properties. J. Comput. Phys. 318, 22–35 (2016)MathSciNetCrossRef
Zurück zum Zitat Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016)MathSciNetCrossRef Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016)MathSciNetCrossRef
Zurück zum Zitat Matai, R., Durbin, P.A.: Zonal eddy viscosity models based on machine learning. Flow Turbul. Combust. 103(1), 93–109 (2019)CrossRef Matai, R., Durbin, P.A.: Zonal eddy viscosity models based on machine learning. Flow Turbul. Combust. 103(1), 93–109 (2019)CrossRef
Zurück zum Zitat Mehl, C., Aubagnac-Karkar, D.: On-the-fly accuracy evaluation of artificial neural networks and hybrid method to improve the robustness of neural network accelerated chemistry solving. Phys. Fluids. 10(1063/5), 0151026 (2023) Mehl, C., Aubagnac-Karkar, D.: On-the-fly accuracy evaluation of artificial neural networks and hybrid method to improve the robustness of neural network accelerated chemistry solving. Phys. Fluids. 10(1063/5), 0151026 (2023)
Zurück zum Zitat Menter, F., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbulence Heat Mass Transf. 4, 625–632 (2003) Menter, F., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbulence Heat Mass Transf. 4, 625–632 (2003)
Zurück zum Zitat Milano, M., Koumoutsakos, P.: Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182(1), 1–26 (2002)CrossRef Milano, M., Koumoutsakos, P.: Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182(1), 1–26 (2002)CrossRef
Zurück zum Zitat Ong, K.C., Chan, A.: A unified wall function for compressible turbulence modelling. J. Turbul. 19(5), 414–430 (2018)MathSciNetCrossRef Ong, K.C., Chan, A.: A unified wall function for compressible turbulence modelling. J. Turbul. 19(5), 414–430 (2018)MathSciNetCrossRef
Zurück zum Zitat Parish, E., Duraisamy, K.: A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305, 758–774 (2015)MathSciNetCrossRef Parish, E., Duraisamy, K.: A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305, 758–774 (2015)MathSciNetCrossRef
Zurück zum Zitat Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNet Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNet
Zurück zum Zitat Popovac, M., Hanjalic, K.: Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow Turbul. Combust. 78(2), 177–202 (2007)CrossRef Popovac, M., Hanjalic, K.: Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow Turbul. Combust. 78(2), 177–202 (2007)CrossRef
Zurück zum Zitat Richards, K., Senecal, P., Pomraning, E.: CONVERGE 3.0.19 (2022) Richards, K., Senecal, P., Pomraning, E.: CONVERGE 3.0.19 (2022)
Zurück zum Zitat Rudy, S.H., Brunton, S.L., Proctor, J.L., et al.: Data-driven discovery of partial differential equations. Sci. Adv. 3(4), e1602614 (2017)CrossRef Rudy, S.H., Brunton, S.L., Proctor, J.L., et al.: Data-driven discovery of partial differential equations. Sci. Adv. 3(4), e1602614 (2017)CrossRef
Zurück zum Zitat Schmelzer, M., Dwight, R.P., Cinnella, P.: Discovery of algebraic Reynolds-stress models using sparse symbolic regression. Flow Turbul. Combust. 104, 579–603 (2020)CrossRef Schmelzer, M., Dwight, R.P., Cinnella, P.: Discovery of algebraic Reynolds-stress models using sparse symbolic regression. Flow Turbul. Combust. 104, 579–603 (2020)CrossRef
Zurück zum Zitat Shih, T.H., Povinelli, L.A., Liu, N.S.: Application of generalized wall function for complex turbulent flows. In: Rodi, W., Fueyo, N. (eds.) Engineering Turbulence Modelling and Experiments, vol. 5, pp. 177–186. Elsevier, Amsterdam (2002)CrossRef Shih, T.H., Povinelli, L.A., Liu, N.S.: Application of generalized wall function for complex turbulent flows. In: Rodi, W., Fueyo, N. (eds.) Engineering Turbulence Modelling and Experiments, vol. 5, pp. 177–186. Elsevier, Amsterdam (2002)CrossRef
Zurück zum Zitat Tieghi, L., Corsini, A., Delibra, G., et al.: Assessment of a machine-learnt adaptive wall-function in a compressor cascade with sinusoidal leading edge. J. Eng. Gas Turbines Power 8, 142 (2020) Tieghi, L., Corsini, A., Delibra, G., et al.: Assessment of a machine-learnt adaptive wall-function in a compressor cascade with sinusoidal leading edge. J. Eng. Gas Turbines Power 8, 142 (2020)
Zurück zum Zitat Tieghi, L., Corsini, A., Delibra, G., et al.: A machine-learnt wall function for rotating diffusers. J. Turbomach. 143(8), 081012 (2021)CrossRef Tieghi, L., Corsini, A., Delibra, G., et al.: A machine-learnt wall function for rotating diffusers. J. Turbomach. 143(8), 081012 (2021)CrossRef
Zurück zum Zitat Vaddireddy, H., Rasheed, A., Staples, A.E., et al.: Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data. Phys. Fluids 32, 1 (2020)CrossRef Vaddireddy, H., Rasheed, A., Staples, A.E., et al.: Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data. Phys. Fluids 32, 1 (2020)CrossRef
Zurück zum Zitat Wang, J.X., Wu, J.L., Xiao, H.: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2(3), 034603 (2017)CrossRef Wang, J.X., Wu, J.L., Xiao, H.: Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids 2(3), 034603 (2017)CrossRef
Zurück zum Zitat Wang, H., Yang, Z., Li, B., et al.: Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry. Phys. Fluids 32(11), 115105 (2020)CrossRef Wang, H., Yang, Z., Li, B., et al.: Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry. Phys. Fluids 32(11), 115105 (2020)CrossRef
Zurück zum Zitat Weatheritt, J., Sandberg, R.: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship. J. Comput. Phys. 325, 22–37 (2016)MathSciNetCrossRef Weatheritt, J., Sandberg, R.: A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship. J. Comput. Phys. 325, 22–37 (2016)MathSciNetCrossRef
Zurück zum Zitat Wilcox, D.: Turbulence Modeling for CFD, 3rd edn (2006) Wilcox, D.: Turbulence Modeling for CFD, 3rd edn (2006)
Zurück zum Zitat Wu, J.L., Wang, J.X., Xiao, H.: A bayesian calibration-prediction method for reducing model-form uncertainties with application in RANS simulations. Flow Turbul. Combust. 97(3), 761–786 (2016)CrossRef Wu, J.L., Wang, J.X., Xiao, H.: A bayesian calibration-prediction method for reducing model-form uncertainties with application in RANS simulations. Flow Turbul. Combust. 97(3), 761–786 (2016)CrossRef
Zurück zum Zitat Wu, J.L., Xiao, H., Paterson, E.: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework. Phys. Rev. Fluids 3(7), 18 (2018)CrossRef Wu, J.L., Xiao, H., Paterson, E.: Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework. Phys. Rev. Fluids 3(7), 18 (2018)CrossRef
Zurück zum Zitat Xie, C., Wang, J., Li, H., et al.: Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence. AIP Adv. 10(1), 015044 (2020)CrossRef Xie, C., Wang, J., Li, H., et al.: Spatially multi-scale artificial neural network model for large eddy simulation of compressible isotropic turbulence. AIP Adv. 10(1), 015044 (2020)CrossRef
Zurück zum Zitat Yang, X.I.A., Zafar, S., Wang, J.X., et al.: Predictive large eddy simulation wall modeling via physics-informed neural networks. Phys. Rev. Fluids 4, 034602 (2019)CrossRef Yang, X.I.A., Zafar, S., Wang, J.X., et al.: Predictive large eddy simulation wall modeling via physics-informed neural networks. Phys. Rev. Fluids 4, 034602 (2019)CrossRef
Zurück zum Zitat Zhou, Z., He, G., Wang, S., et al.: Subgrid-scale model for large eddy simulation of isotropic turbulent flows using an artificial neural network. Comput. Fluids 195, 104319 (2019)MathSciNetCrossRef Zhou, Z., He, G., Wang, S., et al.: Subgrid-scale model for large eddy simulation of isotropic turbulent flows using an artificial neural network. Comput. Fluids 195, 104319 (2019)MathSciNetCrossRef
Zurück zum Zitat Zhou, Z., He, G., Yang, X.: Wall model based on neural networks for les of turbulent flows over periodic hills. Phys. Rev. Fluids 6, 054610 (2021)CrossRef Zhou, Z., He, G., Yang, X.: Wall model based on neural networks for les of turbulent flows over periodic hills. Phys. Rev. Fluids 6, 054610 (2021)CrossRef
Metadaten
Titel
Exploring the Potential and the Practical Usability of a Machine Learning Approach for Improving Wall Friction Predictions of RANS Wall Functions in Non-equilibrium Turbulent Flows
verfasst von
Erwan Rondeaux
Adèle Poubeau
Christian Angelberger
Miguel Munoz Zuniga
Damien Aubagnac-Karkar
Roberto Paoli
Publikationsdatum
28.03.2024
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 4/2024
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-024-00539-1

Weitere Artikel der Ausgabe 4/2024

Flow, Turbulence and Combustion 4/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.