Skip to main content

2011 | OriginalPaper | Buchkapitel

16. Gas-Sparged Ultrafiltration: Recent Trends, Applications and Future Challenges

verfasst von : Kaustubha Mohanty, Raja Ghosh

Erschienen in: Membrane and Desalination Technologies

Verlag: Humana Press

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ultrafiltration is a pressure-driven membrane technique whose applications are wide ranging: protein fractionation to wastewater treatment. The performance of ultrafiltration is limited by concentration polarization and subsequent fouling. Gas sparging i.e. introduction of gas bubbles along with the feed has been shown to be effective in reducing concentration polarization and thus controlling fouling. This chapter reviews the recent developments in gas-sparged ultrafiltration. The review focuses on the basics of ultrafiltration and two-phase flow hydrodynamics, the use of gas bubbles for enhancing permeate flux and its applications in bioseparation and wastewater treatment. Some practical issues and future challenges are also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cui ZF, Chang S, Fane AG (2003) The use of gas bubbling to enhance membrane processes. J Memb Sci 221:1–35CrossRef Cui ZF, Chang S, Fane AG (2003) The use of gas bubbling to enhance membrane processes. J Memb Sci 221:1–35CrossRef
2.
Zurück zum Zitat Al-Bastaki N, Abbas A (2001) Use of fluid instabilities to enhance membrane performance: a review. Desalination 136:255–262CrossRef Al-Bastaki N, Abbas A (2001) Use of fluid instabilities to enhance membrane performance: a review. Desalination 136:255–262CrossRef
3.
Zurück zum Zitat Brindle K, Stephenson T (1996) The application of membrane biological reactors for the treatment of wastewaters. Biotechnol Bioeng 49:601–610PubMedCrossRef Brindle K, Stephenson T (1996) The application of membrane biological reactors for the treatment of wastewaters. Biotechnol Bioeng 49:601–610PubMedCrossRef
4.
Zurück zum Zitat Viswanathan C, Aim RB, Parameswaran K (2000) Membrane separation bioreactors for wastewater treatment. Crit Rev Environ Sci Technol 30(1): 1–48CrossRef Viswanathan C, Aim RB, Parameswaran K (2000) Membrane separation bioreactors for wastewater treatment. Crit Rev Environ Sci Technol 30(1): 1–48CrossRef
5.
Zurück zum Zitat Cicek N (2003) A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Can Biosyst Eng 45:37–49 Cicek N (2003) A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater. Can Biosyst Eng 45:37–49
6.
Zurück zum Zitat Ghosh R (2003) Protein bioseparation using ultrafiltration: theory, applications and new developments. Imperial College Press/World Scientific, LondonCrossRef Ghosh R (2003) Protein bioseparation using ultrafiltration: theory, applications and new developments. Imperial College Press/World Scientific, LondonCrossRef
7.
Zurück zum Zitat Li QY, Cui ZF, Pepper DS (1997) Fractionation of HSA and IgG by gas-sparged ultrafiltration. J Memb Sci 136:181–190CrossRef Li QY, Cui ZF, Pepper DS (1997) Fractionation of HSA and IgG by gas-sparged ultrafiltration. J Memb Sci 136:181–190CrossRef
8.
Zurück zum Zitat Belfort G, Pimbley JM, Greiner A, Chung KY (1993) Diagnosis of membrane fouling using a rotating annular filter: 1. cell culture media. J Memb Sci 77:1–22CrossRef Belfort G, Pimbley JM, Greiner A, Chung KY (1993) Diagnosis of membrane fouling using a rotating annular filter: 1. cell culture media. J Memb Sci 77:1–22CrossRef
9.
Zurück zum Zitat Bellhouse BJ, Sobey IJ, Alani S, DeBlois BM (1994) Enhanced filtration using flat membranes and standing vortex waves. Bioseparation 4:127PubMed Bellhouse BJ, Sobey IJ, Alani S, DeBlois BM (1994) Enhanced filtration using flat membranes and standing vortex waves. Bioseparation 4:127PubMed
10.
Zurück zum Zitat Najarian S, Bellhouse BJ (1996) Enhanced microfiltration of bovine blood using a tubular membrane with screw-threaded insert and oscillatory flow. J Memb Sci 112:249–261CrossRef Najarian S, Bellhouse BJ (1996) Enhanced microfiltration of bovine blood using a tubular membrane with screw-threaded insert and oscillatory flow. J Memb Sci 112:249–261CrossRef
11.
Zurück zum Zitat Wang YY, Howell JA, Field RW, Wu DX (1994) Simulation of cross-flow filtration for baffled tubular channels and pulsatile flow. J Memb Sci 95:243–258CrossRef Wang YY, Howell JA, Field RW, Wu DX (1994) Simulation of cross-flow filtration for baffled tubular channels and pulsatile flow. J Memb Sci 95:243–258CrossRef
12.
Zurück zum Zitat Cui ZF (1993) Experimental investigation on enhancement of cross flow ultrafiltration with air sparging. In: Patterson R (ed) Effective membrane processes – new perspectives. Mechanical Engineering, London Cui ZF (1993) Experimental investigation on enhancement of cross flow ultrafiltration with air sparging. In: Patterson R (ed) Effective membrane processes – new perspectives. Mechanical Engineering, London
13.
Zurück zum Zitat Cui ZF, Wright KIT (1994) Gas-liquid two phase flow ultrafiltration of BSA and dextran solution. J Memb Sci 90:183CrossRef Cui ZF, Wright KIT (1994) Gas-liquid two phase flow ultrafiltration of BSA and dextran solution. J Memb Sci 90:183CrossRef
14.
Zurück zum Zitat Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic, Lancaster Cheryan M (1998) Ultrafiltration and microfiltration handbook. Technomic, Lancaster
15.
Zurück zum Zitat Kimura S (1991) Japan’s aqua renaissance 90 project. Water Sci Technol 23:1573–1582 Kimura S (1991) Japan’s aqua renaissance 90 project. Water Sci Technol 23:1573–1582
16.
Zurück zum Zitat Yokomizo T (1994) Ultrafiltration membrane technology for regeneration of building wastewaters for reuse. Desalination 98:319–326CrossRef Yokomizo T (1994) Ultrafiltration membrane technology for regeneration of building wastewaters for reuse. Desalination 98:319–326CrossRef
17.
Zurück zum Zitat Buisson H, Cote P, Praderie M, Paillard H (1998) The use of immersed membranes for upgrading wastewater treatment plants. Water Sci Technol 37:89–95CrossRef Buisson H, Cote P, Praderie M, Paillard H (1998) The use of immersed membranes for upgrading wastewater treatment plants. Water Sci Technol 37:89–95CrossRef
18.
Zurück zum Zitat Cote P, Buisson H, Pound C, Arakaki G (1997) Immersed membrane activated sludge for the reuse of municipal wastewater. Desalination 113:189–196CrossRef Cote P, Buisson H, Pound C, Arakaki G (1997) Immersed membrane activated sludge for the reuse of municipal wastewater. Desalination 113:189–196CrossRef
19.
Zurück zum Zitat Fan XJ, Urbain V, Qian Y, Manem J (1996) Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Water Sci Technol 34:129–136CrossRef Fan XJ, Urbain V, Qian Y, Manem J (1996) Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment. Water Sci Technol 34:129–136CrossRef
20.
Zurück zum Zitat Irwin J (1990) On-site wastewater reclamation and recycling. Water Environ Technol 2:90–91 Irwin J (1990) On-site wastewater reclamation and recycling. Water Environ Technol 2:90–91
21.
Zurück zum Zitat Berube PR, Hall ER (2001) Fate and removal kinetics of contaminants contained in evaporator condensate during treatment for reuse using a high-temperature membrane bioreactor. J Pulp Paper Sci 27:41–45 Berube PR, Hall ER (2001) Fate and removal kinetics of contaminants contained in evaporator condensate during treatment for reuse using a high-temperature membrane bioreactor. J Pulp Paper Sci 27:41–45
22.
Zurück zum Zitat Fan YB, Wang JS, Jiang ZC (1998) Test of membrane bioreactor for wastewater treatment of a petrochemical complex. J Environ Sci 10:269–275 Fan YB, Wang JS, Jiang ZC (1998) Test of membrane bioreactor for wastewater treatment of a petrochemical complex. J Environ Sci 10:269–275
23.
Zurück zum Zitat Scholzy W, Fuchs W (2000) Treatment of oil contaminated wastewater in a membrane bioreactor. Water Res 34:3621–3629CrossRef Scholzy W, Fuchs W (2000) Treatment of oil contaminated wastewater in a membrane bioreactor. Water Res 34:3621–3629CrossRef
24.
Zurück zum Zitat Manem JAS (1996) Membrane bioreactors. In: Mallevialle J, Odendaal PE, Wiesner MR (eds) Water treatment membrane processes. McGraw Hill, New York Manem JAS (1996) Membrane bioreactors. In: Mallevialle J, Odendaal PE, Wiesner MR (eds) Water treatment membrane processes. McGraw Hill, New York
25.
Zurück zum Zitat Bixler HJ, Rappe GC (1970) Increasing the mass-transport rate across ultrafiltration membranes. US Patent 3 541 006. 17 Nov 1970 Bixler HJ, Rappe GC (1970) Increasing the mass-transport rate across ultrafiltration membranes. US Patent 3 541 006. 17 Nov 1970
26.
Zurück zum Zitat Van der Waal MJ, van der Velden PM, Koning J, Smolders CA, van Swaay WPM (1977) Use of fluidized beds as turbulence promoters in tubular membrane systems. Desalination 22:465–483CrossRef Van der Waal MJ, van der Velden PM, Koning J, Smolders CA, van Swaay WPM (1977) Use of fluidized beds as turbulence promoters in tubular membrane systems. Desalination 22:465–483CrossRef
27.
Zurück zum Zitat Bellara SR, Cui ZF, Pepper DS (1996) Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes. J Memb Sci 121:175–184CrossRef Bellara SR, Cui ZF, Pepper DS (1996) Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes. J Memb Sci 121:175–184CrossRef
28.
Zurück zum Zitat Taha T, Cui ZF (2002) Hydrodynamic analysis of upward slug flow in tubular membranes. Desalination 145:179–182CrossRef Taha T, Cui ZF (2002) Hydrodynamic analysis of upward slug flow in tubular membranes. Desalination 145:179–182CrossRef
29.
Zurück zum Zitat Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic, New York Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic, New York
30.
Zurück zum Zitat Miyahara T, Tsuchiya K, Fan LS (1988) Wake properties of a single gas bubble in a three-dimensional liquid–solid fluidized bed. Int J Multiphase Flow 41:749–763CrossRef Miyahara T, Tsuchiya K, Fan LS (1988) Wake properties of a single gas bubble in a three-dimensional liquid–solid fluidized bed. Int J Multiphase Flow 41:749–763CrossRef
31.
Zurück zum Zitat Whalley PB (1987) Boiling condensation and gas–liquid flow. Clarendon, Oxford Whalley PB (1987) Boiling condensation and gas–liquid flow. Clarendon, Oxford
32.
Zurück zum Zitat Hewitt GF, Hall-Taylor NS (1970) Annular two-phase flow. Pergamon, Oxford Hewitt GF, Hall-Taylor NS (1970) Annular two-phase flow. Pergamon, Oxford
33.
Zurück zum Zitat Mercier M, Fonade C, Lafforgue-Delorme C (1997) How slug–flow can enhance the ultrafiltration flux in mineral tubular membranes. J Memb Sci 128(1):103–113CrossRef Mercier M, Fonade C, Lafforgue-Delorme C (1997) How slug–flow can enhance the ultrafiltration flux in mineral tubular membranes. J Memb Sci 128(1):103–113CrossRef
34.
Zurück zum Zitat Li QY, Cui ZF, Pepper DS (1997) Effect of bubble size and frequency on the permeate flux of gas sparged ultrafiltration with tubular membranes. Chem Eng J 67:71–75CrossRef Li QY, Cui ZF, Pepper DS (1997) Effect of bubble size and frequency on the permeate flux of gas sparged ultrafiltration with tubular membranes. Chem Eng J 67:71–75CrossRef
35.
Zurück zum Zitat Ghosh R, Cui ZF (1999) Mass transfer in gas sparged ultrafiltration: upward slug–flow in tubular membranes. J Memb Sci 162:91–103CrossRef Ghosh R, Cui ZF (1999) Mass transfer in gas sparged ultrafiltration: upward slug–flow in tubular membranes. J Memb Sci 162:91–103CrossRef
36.
Zurück zum Zitat Cui ZF, Bellara SR, Homewood P (1997) Airlift crossflow membrane filtration – a feasibility study with dextran ultrafiltration. J Memb Sci 128:83–91CrossRef Cui ZF, Bellara SR, Homewood P (1997) Airlift crossflow membrane filtration – a feasibility study with dextran ultrafiltration. J Memb Sci 128:83–91CrossRef
37.
Zurück zum Zitat Cui ZF, Wright KLT (1996) Flux enhancement with gas sparging in downwards crossflow ultrafiltration: performance and mechanism. J Memb Sci 117:109–116CrossRef Cui ZF, Wright KLT (1996) Flux enhancement with gas sparging in downwards crossflow ultrafiltration: performance and mechanism. J Memb Sci 117:109–116CrossRef
38.
Zurück zum Zitat Cui ZF, Ghosh R, Yu J, Luan SD (2001) An experimental study of flux enhancement with air sparging in a horizontal tubular membrane module In: Proceedings of the sixth world congress on chemical engineering, Melbourne Cui ZF, Ghosh R, Yu J, Luan SD (2001) An experimental study of flux enhancement with air sparging in a horizontal tubular membrane module In: Proceedings of the sixth world congress on chemical engineering, Melbourne
39.
Zurück zum Zitat Cheng TW, Yeh HM, Wu JH (1999) Effects of gas slugs and inclination angle on the ultrafiltration flux in tubular membrane module. J Memb Sci 158:223–234CrossRef Cheng TW, Yeh HM, Wu JH (1999) Effects of gas slugs and inclination angle on the ultrafiltration flux in tubular membrane module. J Memb Sci 158:223–234CrossRef
40.
Zurück zum Zitat Cheng TW (2002) Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane. J Memb Sci 196:103–110CrossRef Cheng TW (2002) Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane. J Memb Sci 196:103–110CrossRef
41.
Zurück zum Zitat Kulkarni SS, Funk EW, Li NN (1992) Ultrafiltration: membranes. In: Ho WS, Sirkar KK (eds) Membrane handbook. Van Nostrand Reinhold, NewYork Kulkarni SS, Funk EW, Li NN (1992) Ultrafiltration: membranes. In: Ho WS, Sirkar KK (eds) Membrane handbook. Van Nostrand Reinhold, NewYork
42.
Zurück zum Zitat Lee C, Chang W, Ju Y (1993) Air slugs entrapped cross-flow filtration of bacteria suspension. Biotechnol Bioeng 41:525–530PubMedCrossRef Lee C, Chang W, Ju Y (1993) Air slugs entrapped cross-flow filtration of bacteria suspension. Biotechnol Bioeng 41:525–530PubMedCrossRef
43.
Zurück zum Zitat Cabassud C, Laborie S, Lainé JM (1997) How slug–flow can improve ultrafiltration flux in organic hollow fibres. J Memb Sci 128:93–101CrossRef Cabassud C, Laborie S, Lainé JM (1997) How slug–flow can improve ultrafiltration flux in organic hollow fibres. J Memb Sci 128:93–101CrossRef
44.
Zurück zum Zitat Laborie S, Cabassud C, Durand-Bourlier L, Laine JM (1998) Fouling control by air sparging inside hollow fibre membranes – effects on energy consumption. Desalination 118:189–196CrossRef Laborie S, Cabassud C, Durand-Bourlier L, Laine JM (1998) Fouling control by air sparging inside hollow fibre membranes – effects on energy consumption. Desalination 118:189–196CrossRef
45.
Zurück zum Zitat Laborie S, Cabassud C, Durand-Bourlier L, Lainé JM (1997) Flux enhancement by a continuous tangential gas flow in ultrafiltration hollow fibres for drinking water production: effects of slug–flow on cake structure. Filtr Sep 34:887–891CrossRef Laborie S, Cabassud C, Durand-Bourlier L, Lainé JM (1997) Flux enhancement by a continuous tangential gas flow in ultrafiltration hollow fibres for drinking water production: effects of slug–flow on cake structure. Filtr Sep 34:887–891CrossRef
46.
Zurück zum Zitat Cabassud C, Laborie S, Durand-Bourlier L, Laine JM (2001) Air sparging in ultrafiltration hollow fibers: relationship between flux enhancement, cake characteristics and hydrodynamic parameters. J Memb Sci 181:57–69CrossRef Cabassud C, Laborie S, Durand-Bourlier L, Laine JM (2001) Air sparging in ultrafiltration hollow fibers: relationship between flux enhancement, cake characteristics and hydrodynamic parameters. J Memb Sci 181:57–69CrossRef
47.
Zurück zum Zitat Bellara SR, Cui ZF, Pepper DS (1997) Fractionation of BSA and lysozyme using gas sparged ultrafiltration in hollow fibre membrane modules. Biotechnol Prog 13:869–872CrossRef Bellara SR, Cui ZF, Pepper DS (1997) Fractionation of BSA and lysozyme using gas sparged ultrafiltration in hollow fibre membrane modules. Biotechnol Prog 13:869–872CrossRef
48.
Zurück zum Zitat Cheng TW, Wu JG (2003) Quantitative flux analysis of gas-liquid two-phase ultrafiltration. Sep Sci Technol 38:817–835CrossRef Cheng TW, Wu JG (2003) Quantitative flux analysis of gas-liquid two-phase ultrafiltration. Sep Sci Technol 38:817–835CrossRef
49.
Zurück zum Zitat Smith SR, Cui ZF (2004) Gas-slug enhanced hollow fibre ultrafiltration – an experimental study. J Memb Sci 242:117–128CrossRef Smith SR, Cui ZF (2004) Gas-slug enhanced hollow fibre ultrafiltration – an experimental study. J Memb Sci 242:117–128CrossRef
50.
Zurück zum Zitat Smith SR, Cui ZF (2004) Analysis of developing laminar pipe flow – an application to gas slug enhanced hollow fibre ultrafiltration. Chem Eng Sci 59:5975–5986CrossRef Smith SR, Cui ZF (2004) Analysis of developing laminar pipe flow – an application to gas slug enhanced hollow fibre ultrafiltration. Chem Eng Sci 59:5975–5986CrossRef
51.
Zurück zum Zitat Li QY, Cui ZF, Pepper DS (1998) Enhancement of ultrafiltration by gas sparging with flat sheet membrane modules. Sep Purif Technol 14:79–83CrossRef Li QY, Cui ZF, Pepper DS (1998) Enhancement of ultrafiltration by gas sparging with flat sheet membrane modules. Sep Purif Technol 14:79–83CrossRef
52.
Zurück zum Zitat Ghosh R, Li QY, Cui ZF (1998) Fractionation of BSA and lysozyme using ultrafiltration: effect of gas sparging. AIChE J 44:61–67CrossRef Ghosh R, Li QY, Cui ZF (1998) Fractionation of BSA and lysozyme using ultrafiltration: effect of gas sparging. AIChE J 44:61–67CrossRef
53.
Zurück zum Zitat Mercier-Bonin M, Lagane C, Fonade C (2000) Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane. J Memb Sci 180:93–102CrossRef Mercier-Bonin M, Lagane C, Fonade C (2000) Influence of a gas/liquid two-phase flow on the ultrafiltration and microfiltration performances: case of a ceramic flat sheet membrane. J Memb Sci 180:93–102CrossRef
54.
Zurück zum Zitat Cheng T, Lin C (2004) A study on cross-flow ultrafiltration with various membrane orientations. Sep Purif Technol 39:13–22CrossRef Cheng T, Lin C (2004) A study on cross-flow ultrafiltration with various membrane orientations. Sep Purif Technol 39:13–22CrossRef
55.
Zurück zum Zitat Kenning DBR, Kao YS (1972) Convective heat transfer to water containing bubbles: enhancement not dependent on thermocapillary. Int J Heat Mass Transf 15:1709–1717CrossRef Kenning DBR, Kao YS (1972) Convective heat transfer to water containing bubbles: enhancement not dependent on thermocapillary. Int J Heat Mass Transf 15:1709–1717CrossRef
56.
Zurück zum Zitat Tokuhiro AT, Lykoudis PS (1994) Natural convection heat transfer from a vertical plate. 1. Enhancement with gas injection. Int J Heat Mass Transf 37:997CrossRef Tokuhiro AT, Lykoudis PS (1994) Natural convection heat transfer from a vertical plate. 1. Enhancement with gas injection. Int J Heat Mass Transf 37:997CrossRef
57.
Zurück zum Zitat Chang IS, Clech PL, Jefferson B, Judd S (2002) Membrane fouling in membrane bioreactors for wastewater treatment. J Environ Eng 128(11):1018–1029CrossRef Chang IS, Clech PL, Jefferson B, Judd S (2002) Membrane fouling in membrane bioreactors for wastewater treatment. J Environ Eng 128(11):1018–1029CrossRef
58.
Zurück zum Zitat Churchouse S (1997) Membrane bioreactors for wastewater treatment – operating experiences with the Kubota submerged membrane activated sludge process. Memb Technol 83:5–9CrossRef Churchouse S (1997) Membrane bioreactors for wastewater treatment – operating experiences with the Kubota submerged membrane activated sludge process. Memb Technol 83:5–9CrossRef
59.
Zurück zum Zitat Gunder B, Krauth K (1998) Replacement of secondary clarification by membrane separation – results with plate and hollow fibre modules. Water Sci Technol 38:383–393CrossRef Gunder B, Krauth K (1998) Replacement of secondary clarification by membrane separation – results with plate and hollow fibre modules. Water Sci Technol 38:383–393CrossRef
60.
Zurück zum Zitat Calabro V, Curcio S, Iorio G (2002) A theoretical analysis of transport phenomena in a hollow fibre membrane bioreactor with immobilized biocatalyst. J Memb Sci 206:217–241CrossRef Calabro V, Curcio S, Iorio G (2002) A theoretical analysis of transport phenomena in a hollow fibre membrane bioreactor with immobilized biocatalyst. J Memb Sci 206:217–241CrossRef
61.
Zurück zum Zitat van Dijk L, Roncken GCG (1997) Membrane bioreactors for wastewater treatment: the state of the art and new developments. Water Sci Technol 35(10):35–41CrossRef van Dijk L, Roncken GCG (1997) Membrane bioreactors for wastewater treatment: the state of the art and new developments. Water Sci Technol 35(10):35–41CrossRef
62.
Zurück zum Zitat Tajima F, Yamamoto T (1988) Apparatus for filtering water containing radioactive substances in nuclear power plants, Toshiba, US Patent 4 756 875 Tajima F, Yamamoto T (1988) Apparatus for filtering water containing radioactive substances in nuclear power plants, Toshiba, US Patent 4 756 875
63.
Zurück zum Zitat Yamamoto K, Hiasa M, Mahmood T, Matsuo T (1989) Direct solid–liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Sci Technol 21:43–54 Yamamoto K, Hiasa M, Mahmood T, Matsuo T (1989) Direct solid–liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Sci Technol 21:43–54
64.
Zurück zum Zitat Chiemchaisri C, Wong YK, Urase T, Yamamoto K (1992) Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment. Water Sci Technol 25:231–240 Chiemchaisri C, Wong YK, Urase T, Yamamoto K (1992) Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment. Water Sci Technol 25:231–240
65.
Zurück zum Zitat Futamura O, Katoh M, Takeuchi K (1994) Organic waste water treatment by activated sludge process using integrated type membrane separation. Desalination 98:17–25CrossRef Futamura O, Katoh M, Takeuchi K (1994) Organic waste water treatment by activated sludge process using integrated type membrane separation. Desalination 98:17–25CrossRef
66.
Zurück zum Zitat Cote PL, Smith BM, Deutschmann AA, Rodrigues CF, Pedersen SK (1994) Frameless array of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate. PCT WO 94/11094 Cote PL, Smith BM, Deutschmann AA, Rodrigues CF, Pedersen SK (1994) Frameless array of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate. PCT WO 94/11094
67.
Zurück zum Zitat Mahendran M, Pedersen SK, Henshaw WJ, Behmann H, Rodrigues CF (1997) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces. PCT WO 97/06880 Mahendran M, Pedersen SK, Henshaw WJ, Behmann H, Rodrigues CF (1997) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces. PCT WO 97/06880
68.
Zurück zum Zitat Leonard D, Mercier-Bonin M, Lindley ND, Lafforgue C (1998) Novel membrane bioreactor with gas/liquid two-phase flow for high-performance degradation of phenol. Biotechnol Prog 14:680–688PubMedCrossRef Leonard D, Mercier-Bonin M, Lindley ND, Lafforgue C (1998) Novel membrane bioreactor with gas/liquid two-phase flow for high-performance degradation of phenol. Biotechnol Prog 14:680–688PubMedCrossRef
69.
Zurück zum Zitat Lee SM, Jung JY, Chung YC (2001) Novel method for enhancing permeate flux of submerged membrane system in two-phase anaerobic reactor. Water Res 35:471–477PubMedCrossRef Lee SM, Jung JY, Chung YC (2001) Novel method for enhancing permeate flux of submerged membrane system in two-phase anaerobic reactor. Water Res 35:471–477PubMedCrossRef
70.
Zurück zum Zitat Futselaar H, Zoontjes RJC, Reith T, Rácz IG (1993) Economics comparison of transverse and longitudinal flow hollow fibre membrane modules for reverse osmosis and ultrafiltration. Desalination 90:345–361CrossRef Futselaar H, Zoontjes RJC, Reith T, Rácz IG (1993) Economics comparison of transverse and longitudinal flow hollow fibre membrane modules for reverse osmosis and ultrafiltration. Desalination 90:345–361CrossRef
71.
Zurück zum Zitat Bouhabila EH, Ben Aim R, Buisson H (2001) Fouling characterization in membrane bioreactors. Sep Purif Technol 1(22–23):123–132CrossRef Bouhabila EH, Ben Aim R, Buisson H (2001) Fouling characterization in membrane bioreactors. Sep Purif Technol 1(22–23):123–132CrossRef
72.
Zurück zum Zitat Posch C, Schiewer S (2005) Critical flux aspect of air sparging and backflushing on membrane bioreactors. Desalination 175:61–71CrossRef Posch C, Schiewer S (2005) Critical flux aspect of air sparging and backflushing on membrane bioreactors. Desalination 175:61–71CrossRef
73.
Zurück zum Zitat Guibert D, Ben Aim R, Rabie H, Cote P (2002) Aeration performance of immersed hollow-fiber membranes in a bentonite suspension. Desalination 148:395–400CrossRef Guibert D, Ben Aim R, Rabie H, Cote P (2002) Aeration performance of immersed hollow-fiber membranes in a bentonite suspension. Desalination 148:395–400CrossRef
74.
Zurück zum Zitat Ghosh R (2006) Enhancement of membrane permeability by gas sparging in submerged hollow fibre ultrafiltration of macromolecular solutions: role of module design. J Memb Sci 274:73–82CrossRef Ghosh R (2006) Enhancement of membrane permeability by gas sparging in submerged hollow fibre ultrafiltration of macromolecular solutions: role of module design. J Memb Sci 274:73–82CrossRef
75.
Zurück zum Zitat Chang S, Fane AG (2001) The effect of fibre diameter on filtration and flux distribution – relevance to submerged hollow fibre modules. J Memb Sci 184:221–231CrossRef Chang S, Fane AG (2001) The effect of fibre diameter on filtration and flux distribution – relevance to submerged hollow fibre modules. J Memb Sci 184:221–231CrossRef
76.
Zurück zum Zitat Chang S, Fane AG, Vigneswaran S (2002) Experimental assessment of filtration of biomass with model axial and transverse fibres. Chem Eng J 87:121–127CrossRef Chang S, Fane AG, Vigneswaran S (2002) Experimental assessment of filtration of biomass with model axial and transverse fibres. Chem Eng J 87:121–127CrossRef
77.
Zurück zum Zitat Chang S, Fane AG, Vigneswaran S (2002) Modelling and optimisation of submerged hollow fibre membrane modules. AIChE J 48:2203–2212CrossRef Chang S, Fane AG, Vigneswaran S (2002) Modelling and optimisation of submerged hollow fibre membrane modules. AIChE J 48:2203–2212CrossRef
78.
Zurück zum Zitat Field RW, Wu D, Howell JA, Gupta BB (1995) Critical flux concept for microfiltration fouling. J Memb Sci 100:259–272CrossRef Field RW, Wu D, Howell JA, Gupta BB (1995) Critical flux concept for microfiltration fouling. J Memb Sci 100:259–272CrossRef
79.
Zurück zum Zitat Churchouse S, Wildgoose D (1999) Membrane bioreactors progress from the laboratory to full-scale use. Memb Technol 111:4–8CrossRef Churchouse S, Wildgoose D (1999) Membrane bioreactors progress from the laboratory to full-scale use. Memb Technol 111:4–8CrossRef
80.
Zurück zum Zitat Yang W, Cicek N, Ilg J (2006) State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America. J Memb Sci 270:201–211CrossRef Yang W, Cicek N, Ilg J (2006) State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America. J Memb Sci 270:201–211CrossRef
81.
Zurück zum Zitat Chua HC, Arnot TC, Howell JA (2002) Controlling fouling in membrane bioreactors operated with a variable throughput. Desalination 149:225–229CrossRef Chua HC, Arnot TC, Howell JA (2002) Controlling fouling in membrane bioreactors operated with a variable throughput. Desalination 149:225–229CrossRef
82.
Zurück zum Zitat Chang IS, Judd SJ (2002) Air sparging of a submerged MBR for municipal wastewater treatment. Process Biochem 37:915–920CrossRef Chang IS, Judd SJ (2002) Air sparging of a submerged MBR for municipal wastewater treatment. Process Biochem 37:915–920CrossRef
83.
Zurück zum Zitat Chang IS, Judd SJ (2003) Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging. Water Sci Technol 47(12):149–154PubMed Chang IS, Judd SJ (2003) Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging. Water Sci Technol 47(12):149–154PubMed
84.
Zurück zum Zitat Ebrahim S (1994) Cleaning and regeneration of membranes in desalination and wastewater applications: State-of-the-art. Desalination 96:225–238CrossRef Ebrahim S (1994) Cleaning and regeneration of membranes in desalination and wastewater applications: State-of-the-art. Desalination 96:225–238CrossRef
85.
Zurück zum Zitat Paul Chen J, Kim SL, Ting YP (2003) Optimization of membrane physical and chemical cleaning by a statistically designed approach. J Memb Sci 219:27–45CrossRef Paul Chen J, Kim SL, Ting YP (2003) Optimization of membrane physical and chemical cleaning by a statistically designed approach. J Memb Sci 219:27–45CrossRef
86.
Zurück zum Zitat Tanaka T, Itoh H, Nakanishi K, Kume T, Matsumo R (1995) Crossflow filtration of Baker’s yeast with periodical stopping of permeation flow and bubbling. Biotechnol Bioeng 47:404–410 Tanaka T, Itoh H, Nakanishi K, Kume T, Matsumo R (1995) Crossflow filtration of Baker’s yeast with periodical stopping of permeation flow and bubbling. Biotechnol Bioeng 47:404–410
87.
Zurück zum Zitat Serra C, Durand-Bourlier L, Clifton MJ, Moulin P, Rouch JC, Aptel P (1999) Use of air sparging to improve backwashing efficiency in hollow-fibre modules, J Memb Sci 161:95–113CrossRef Serra C, Durand-Bourlier L, Clifton MJ, Moulin P, Rouch JC, Aptel P (1999) Use of air sparging to improve backwashing efficiency in hollow-fibre modules, J Memb Sci 161:95–113CrossRef
88.
Zurück zum Zitat Verbeck J, Worm G, Futselaar H, van Dijk JC (2000) Combined air–water flush in dead-end ultrafiltration. In: Proceedings of the IWA Conference on Drinking and Industrial Water Production, Paris, pp 655–663 Verbeck J, Worm G, Futselaar H, van Dijk JC (2000) Combined air–water flush in dead-end ultrafiltration. In: Proceedings of the IWA Conference on Drinking and Industrial Water Production, Paris, pp 655–663
89.
Zurück zum Zitat Clarkson JR, Cui ZF, Darton RC (1999) Protein denaturation in foam. I. Mechanism study. J Colloid Interface Sci 215:323–332PubMedCrossRef Clarkson JR, Cui ZF, Darton RC (1999) Protein denaturation in foam. I. Mechanism study. J Colloid Interface Sci 215:323–332PubMedCrossRef
90.
Zurück zum Zitat Clarkson JR, Cui ZF, Darton RC (1999) Protein denaturation in foam. II. Surface activity and conformational change. J Colloid Interface Sci 215:333–338PubMedCrossRef Clarkson JR, Cui ZF, Darton RC (1999) Protein denaturation in foam. II. Surface activity and conformational change. J Colloid Interface Sci 215:333–338PubMedCrossRef
91.
Zurück zum Zitat Clarkson JR, Cui ZF, Darton RC (2000) Effect of solution conditions on protein damage in foam. Biochem Eng J 2:107–114CrossRef Clarkson JR, Cui ZF, Darton RC (2000) Effect of solution conditions on protein damage in foam. Biochem Eng J 2:107–114CrossRef
92.
Zurück zum Zitat Chiemchaisri C, Yamamoto K, Vigneswaram S (1993) Household membrane bioreactor in domestic wastewater treatment. Water Sci Technol 27(1):171–178 Chiemchaisri C, Yamamoto K, Vigneswaram S (1993) Household membrane bioreactor in domestic wastewater treatment. Water Sci Technol 27(1):171–178
93.
Zurück zum Zitat Muller EB, Stouthamer AH, Verseveld HW, Eikelboom DH (1995) Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by cross-flow filtration. Water Res 29:1179–1189CrossRef Muller EB, Stouthamer AH, Verseveld HW, Eikelboom DH (1995) Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by cross-flow filtration. Water Res 29:1179–1189CrossRef
94.
Zurück zum Zitat Cicek N, Franco JP, Suidan MT, Urbain V (1998) Using a membrane bioreactor to reclaim wastewater. J Am Water Works Assoc 90(11):105–113 Cicek N, Franco JP, Suidan MT, Urbain V (1998) Using a membrane bioreactor to reclaim wastewater. J Am Water Works Assoc 90(11):105–113
95.
Zurück zum Zitat Cote P, Buisson H, Praderie M (1998) Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Sci Technol 38(4–5):437–442CrossRef Cote P, Buisson H, Praderie M (1998) Immersed membranes activated sludge process applied to the treatment of municipal wastewater. Water Sci Technol 38(4–5):437–442CrossRef
96.
Zurück zum Zitat Ahn KH, Cha HY, Song KG (1999) Retorfitting municipal sewage treatment plants using an innovative membrane–bioreactor system. Desalination 124:279–286CrossRef Ahn KH, Cha HY, Song KG (1999) Retorfitting municipal sewage treatment plants using an innovative membrane–bioreactor system. Desalination 124:279–286CrossRef
97.
Zurück zum Zitat Rosenberger S, Kruger U, Witzig R, Manz W, Szewzyk U, Kraume M (2002) Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res 36:413–420PubMedCrossRef Rosenberger S, Kruger U, Witzig R, Manz W, Szewzyk U, Kraume M (2002) Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Res 36:413–420PubMedCrossRef
98.
Zurück zum Zitat Roest Van de HF, Lawrence DP, Van Bentem AGN (2002) Membrane bioreactors for municipal wastewater treatment. STOWA Report. IWA, London Roest Van de HF, Lawrence DP, Van Bentem AGN (2002) Membrane bioreactors for municipal wastewater treatment. STOWA Report. IWA, London
99.
Zurück zum Zitat Psoch C, Schiewer S (2006) Anti-fouling application of air sparging and backflushing for MBR. J Memb Sci 283(2):273–280 Psoch C, Schiewer S (2006) Anti-fouling application of air sparging and backflushing for MBR. J Memb Sci 283(2):273–280
100.
Zurück zum Zitat Psoch C, Schiewer S (2009) Air sparged membrane bioreactor for performance increase and less fouling. Water & Environmental Research Center, University of Alaska, Fairbanks, Alaska Psoch C, Schiewer S (2009) Air sparged membrane bioreactor for performance increase and less fouling. Water & Environmental Research Center, University of Alaska, Fairbanks, Alaska
101.
Zurück zum Zitat Wang LK, Wang MHS (2008) Development and applications of membrane bioreactor technologies. In: National engineers week conference, Albany Marriott, Albany, NY, Feb 2008 Wang LK, Wang MHS (2008) Development and applications of membrane bioreactor technologies. In: National engineers week conference, Albany Marriott, Albany, NY, Feb 2008
102.
Zurück zum Zitat Levesque S, Wallis-Large C, Hemken B, Bontrager S, Kreuzwiesner S (2009) Plan ahead with MBRs. Water Environ Fed 21(1):34–37 Levesque S, Wallis-Large C, Hemken B, Bontrager S, Kreuzwiesner S (2009) Plan ahead with MBRs. Water Environ Fed 21(1):34–37
103.
Zurück zum Zitat Wang LK, Shammas NK, Hung YT (eds) (2009) Advanced biological treatment processes. Humana, Totowa, pp 129–156CrossRef Wang LK, Shammas NK, Hung YT (eds) (2009) Advanced biological treatment processes. Humana, Totowa, pp 129–156CrossRef
104.
Zurück zum Zitat Wang LK, Ivanov V, Tay JH, Hung YT (eds) (2010) Environmental biotechnology. Humana, Totowa Wang LK, Ivanov V, Tay JH, Hung YT (eds) (2010) Environmental biotechnology. Humana, Totowa
Metadaten
Titel
Gas-Sparged Ultrafiltration: Recent Trends, Applications and Future Challenges
verfasst von
Kaustubha Mohanty
Raja Ghosh
Copyright-Jahr
2011
Verlag
Humana Press
DOI
https://doi.org/10.1007/978-1-59745-278-6_16