Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 3/2022

06.01.2022 | Original Paper

H2-rich syngas produced from steam gasification of municipal solid waste: a modeling approach

verfasst von: Leijie Fu, Yan Cao, Jiang Du

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Steam gasification is considered as a clean route to produce H2-rich syngas and other energy products such as methanol. However, environmental issues and technical problems related to tar formation have become serious challenges in commercialization of biomass gasification. In the present study, an ASPEN plus® model was developed to convert the municipal solid waste (MSW) into a H2-rich syngas in the presence of steam as gasification agent. Different operation conditions, temperatures (750–900 °C) and steam flow rates (SFRs) (0.138–0.312 kg/h) were studied for their effects on the gas compositions, product yields and gasifier performances. The results indicated that the H2 content increased by increasing the gasification temperature. When the temperature was raised from 750 to 900 ℃, the gas yield rose by 29.8% due to the enhanced endothermic reactions. Furthermore, with the increase in gasification temperature, the tar yield declined with respect to the tar cracking reaction. The addition of steam significantly improved H2 production by simultaneously promoting the water–gas shift reaction and tar cracking reactions. To summarize, the present model provided positive predictions of the MSW gasification in terms of tar elimination and H2-rich syngas production.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adeyemi I, Janajreh I (2015) Modeling of the entrained flow gasification: kinetics-based ASPEN plus® model. Renew Energy 82:77–84CrossRef Adeyemi I, Janajreh I (2015) Modeling of the entrained flow gasification: kinetics-based ASPEN plus® model. Renew Energy 82:77–84CrossRef
Zurück zum Zitat Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sustain Energy Rev 14:2852–2862CrossRef Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sustain Energy Rev 14:2852–2862CrossRef
Zurück zum Zitat Chan WP, Veksha A, Lei J, Oh WD, Dou X, Giannis A, Lisak G, Lim TT (2019) A hot syngas purification system integrated with downdraft gasification of municipal solid waste. Appl Energy 237:227–240CrossRef Chan WP, Veksha A, Lei J, Oh WD, Dou X, Giannis A, Lisak G, Lim TT (2019) A hot syngas purification system integrated with downdraft gasification of municipal solid waste. Appl Energy 237:227–240CrossRef
Zurück zum Zitat Dong Q, Zhang X, Zhou Y, Jia X (2020) Prediction and optimization of syngas production from a kinetic-based biomass gasification process model. Fuel Process Technol 212:106604CrossRef Dong Q, Zhang X, Zhou Y, Jia X (2020) Prediction and optimization of syngas production from a kinetic-based biomass gasification process model. Fuel Process Technol 212:106604CrossRef
Zurück zum Zitat Franco C, Pinto F, Gulyurtlu I, Cabrita I (2003) The study of reactions influencing the biomass steam gasification process. Fuel 82:835–842CrossRef Franco C, Pinto F, Gulyurtlu I, Cabrita I (2003) The study of reactions influencing the biomass steam gasification process. Fuel 82:835–842CrossRef
Zurück zum Zitat Guo XJ, Xiao B, Zhang XL, Luo SY, He MY (2009) Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier. Bioresour Technol 100:1003–1006CrossRef Guo XJ, Xiao B, Zhang XL, Luo SY, He MY (2009) Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier. Bioresour Technol 100:1003–1006CrossRef
Zurück zum Zitat He M, Xiao B, Liu S, Guo X, Luo S, Xu Z, Feng Y, Hu Z (2009a) Hydrogen rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of steam to MSW ratios and weight hourly space velocity on gas production and composition. Int J Hydrogen Energy 34:195–203CrossRef He M, Xiao B, Liu S, Guo X, Luo S, Xu Z, Feng Y, Hu Z (2009a) Hydrogen rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of steam to MSW ratios and weight hourly space velocity on gas production and composition. Int J Hydrogen Energy 34:195–203CrossRef
Zurück zum Zitat He M, Hu Z, Xiao B, Li J, Guo X, Luo S, Yang F, Feng Y, Yang G, Liu S (2009b) Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition. Int J Hydrogen Energy 34:195–203CrossRef He M, Hu Z, Xiao B, Li J, Guo X, Luo S, Yang F, Feng Y, Yang G, Liu S (2009b) Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition. Int J Hydrogen Energy 34:195–203CrossRef
Zurück zum Zitat Kaushal P, Tyagi R (2017) Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS®. Renewable Energy 101:629–639CrossRef Kaushal P, Tyagi R (2017) Advanced simulation of biomass gasification in a fluidized bed reactor using ASPEN PLUS®. Renewable Energy 101:629–639CrossRef
Zurück zum Zitat Miaomiao N, Yaji H, Baosheng J, Yu S, Xinye W (2014) Enriched-air gasification of refuse-derived fuel in a fluidized bed: effect of gasifying conditions and bed materials. Chem Eng Technol 37:1787–1796CrossRef Miaomiao N, Yaji H, Baosheng J, Yu S, Xinye W (2014) Enriched-air gasification of refuse-derived fuel in a fluidized bed: effect of gasifying conditions and bed materials. Chem Eng Technol 37:1787–1796CrossRef
Zurück zum Zitat Murer MJ, Spliethoff H, de Waal CM, Wilpshaar S, Berkhout B, van Berlo MA (2011) High efficient waste-to-energy in Amsterdam: getting ready for the next steps. Waste Manage Res: J Int Solid Wastes Publ Clean Assoc ISWA 29:20–29CrossRef Murer MJ, Spliethoff H, de Waal CM, Wilpshaar S, Berkhout B, van Berlo MA (2011) High efficient waste-to-energy in Amsterdam: getting ready for the next steps. Waste Manage Res: J Int Solid Wastes Publ Clean Assoc ISWA 29:20–29CrossRef
Zurück zum Zitat Pauls JH, Mahinpey N, Mostafavi E (2016) Simulation of air-steam gasification of woody biomass in a bubbling fluidized bed using ASPEN plus®: a comprehensive model including pyrolysis, hydrodynamics and tar production. Biomass Bioenergy 95:157–166CrossRef Pauls JH, Mahinpey N, Mostafavi E (2016) Simulation of air-steam gasification of woody biomass in a bubbling fluidized bed using ASPEN plus®: a comprehensive model including pyrolysis, hydrodynamics and tar production. Biomass Bioenergy 95:157–166CrossRef
Zurück zum Zitat Pfeifer C, Koppatz S, Hofbauer H (2011) Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Convers Biorefinery 1:39–53CrossRef Pfeifer C, Koppatz S, Hofbauer H (2011) Steam gasification of various feedstocks at a dual fluidised bed gasifier: impacts of operation conditions and bed materials. Biomass Convers Biorefinery 1:39–53CrossRef
Zurück zum Zitat Prestipino M, Chiodo V, Maisano S, Zafarana G, Urbani F, Galvagno A (2017) Hydrogen rich syngas production by air-steam gasification of citrus peel residues from citrus juice manufacturing: Experimental and simulation activities. Int J Hydrogen Energy 42:26816–26827CrossRef Prestipino M, Chiodo V, Maisano S, Zafarana G, Urbani F, Galvagno A (2017) Hydrogen rich syngas production by air-steam gasification of citrus peel residues from citrus juice manufacturing: Experimental and simulation activities. Int J Hydrogen Energy 42:26816–26827CrossRef
Zurück zum Zitat Rios MLV, Gonzalez AM, Silva Lora EE, del Olmo OAA (2018) Reduction of tar generated during biomass gasification: A review. Biomass Bioenergy 108:345–370CrossRef Rios MLV, Gonzalez AM, Silva Lora EE, del Olmo OAA (2018) Reduction of tar generated during biomass gasification: A review. Biomass Bioenergy 108:345–370CrossRef
Zurück zum Zitat Singh D, Yadav S, Bharadwaj N, Verma R (2020) Low temperature steam gasification to produce hydrogen rich gas from kitchen food waste: influence of steam flow rate and temperature. Int J Hydrogen Energy 24:20843–20850CrossRef Singh D, Yadav S, Bharadwaj N, Verma R (2020) Low temperature steam gasification to produce hydrogen rich gas from kitchen food waste: influence of steam flow rate and temperature. Int J Hydrogen Energy 24:20843–20850CrossRef
Zurück zum Zitat Smith J, Alembath A, Al-Rubaye H, Yu J, Gao X, Golpour H (2019) Validation and application of a kinetic model for downdraft biomass gasification simulation. Chem Eng Technol 42:2505–2519CrossRef Smith J, Alembath A, Al-Rubaye H, Yu J, Gao X, Golpour H (2019) Validation and application of a kinetic model for downdraft biomass gasification simulation. Chem Eng Technol 42:2505–2519CrossRef
Zurück zum Zitat Zhou Y, Shan Y, Guan D et al (2020) Sharing tableware reduces waste generation, emissions and water consumption in China’s takeaway packaging waste dilemma. Nat Food 1:552–561CrossRef Zhou Y, Shan Y, Guan D et al (2020) Sharing tableware reduces waste generation, emissions and water consumption in China’s takeaway packaging waste dilemma. Nat Food 1:552–561CrossRef
Metadaten
Titel
H2-rich syngas produced from steam gasification of municipal solid waste: a modeling approach
verfasst von
Leijie Fu
Yan Cao
Jiang Du
Publikationsdatum
06.01.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 3/2022
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-021-02236-3

Weitere Artikel der Ausgabe 3/2022

Clean Technologies and Environmental Policy 3/2022 Zur Ausgabe