Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 2/2017

22.06.2016 | Original Paper

Heavy metal removal from simulated wastewater using electrochemical technology: optimization of copper electrodeposition in a membraneless fluidized bed electrode

verfasst von: George André Tonini, Luís Augusto Martins Ruotolo

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Heavy metal removal from industrial wastewaters has been intensively studied, since it is well known that they can cause severe problems to human health and aquatic life, even at very low concentrations. In this work, it was demonstrated that electrodeposition in fluidized bed electrode (FBE) can be efficiently employed to remove metal ions from solution, avoid contamination, and recover the metal. Copper electrodeposition from diluted solutions was efficiently performed using a membraneless FBE. The average current efficiency (ACE), average energy consumption (AEC), and space–time yield (AY) was optimized taking into account the operational and process variables. It was noted that for all response variables studied, the raise of supporting electrolyte concentration (C s) contributed to improvements in the process. The operational conditions current (I) and bed expansion (E) determined the values of CE, Y, and EC under activated control, but the initial copper concentration (C 0) determined how long the electrodeposition process will work under activated or mass transfer control, thus affecting the average values of CE, Y, and EC. Considering C 0 of 500 mg L−1, copper can be optimally recovered with ACE >60 %, AY >38 kg h−1 m−3, and AEC <4.0 kWh kg−1 by applying the lowest I and the highest levels of E and C s. It was concluded that the electrochemical technology using a membraneless FBE reactor is economically competitive and be applied for the treatment of wastewaters contaminated with copper or other metals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abdel-Aziz MH, Nirdosh I, Sedahmed GH (2015) Mass transfer at a rotating tubular packed bed of woven screens in relation to electrochemical and catalytic reactor design. Int J Heat Mass Transf 90:427–438CrossRef Abdel-Aziz MH, Nirdosh I, Sedahmed GH (2015) Mass transfer at a rotating tubular packed bed of woven screens in relation to electrochemical and catalytic reactor design. Int J Heat Mass Transf 90:427–438CrossRef
Zurück zum Zitat Ahmad A, Siddique JA, Laskar MA, Kumar R, Setapar SHM, Khatoon A, Shiekh RA (2015) New generation Amberlite XAD resin for the removal of metal ions: a review. J Environ Sci 31:104–123CrossRef Ahmad A, Siddique JA, Laskar MA, Kumar R, Setapar SHM, Khatoon A, Shiekh RA (2015) New generation Amberlite XAD resin for the removal of metal ions: a review. J Environ Sci 31:104–123CrossRef
Zurück zum Zitat Akbal F, Camci S (2010) Comparison of electrocoagulation and chemical coagulation for heavy metal removal. Chem Eng Technol 33:1655–1664CrossRef Akbal F, Camci S (2010) Comparison of electrocoagulation and chemical coagulation for heavy metal removal. Chem Eng Technol 33:1655–1664CrossRef
Zurück zum Zitat Baghban E, Mehrabani-Zeinabad A, Moheb A (2014) The effects of operational parameters on the electrochemical removal of cadmium ion from dilute aqueous solutions. Hydrometallurgy 149:97–105CrossRef Baghban E, Mehrabani-Zeinabad A, Moheb A (2014) The effects of operational parameters on the electrochemical removal of cadmium ion from dilute aqueous solutions. Hydrometallurgy 149:97–105CrossRef
Zurück zum Zitat Bazrafshan E, Mohammadi L, Moghaddam AA, Mahvi AH (2015) Heavy metals removal from aqueous environments by electrocoagulation process—a systematic review. J Environ Health Sci Eng 13:1–16CrossRef Bazrafshan E, Mohammadi L, Moghaddam AA, Mahvi AH (2015) Heavy metals removal from aqueous environments by electrocoagulation process—a systematic review. J Environ Health Sci Eng 13:1–16CrossRef
Zurück zum Zitat Beenackers AACM, Vanswaaij WPM, Welmers A (1977) Mechanism of charge-transfer in discontinuous metal phase of a fluidized-bed electrode. Electrochim Acta 22:1277–1281CrossRef Beenackers AACM, Vanswaaij WPM, Welmers A (1977) Mechanism of charge-transfer in discontinuous metal phase of a fluidized-bed electrode. Electrochim Acta 22:1277–1281CrossRef
Zurück zum Zitat Boulay N, Edwards M (2000) Copper in the urban water cycle. Crit Rev Environ Sci Technol 30:297–326CrossRef Boulay N, Edwards M (2000) Copper in the urban water cycle. Crit Rev Environ Sci Technol 30:297–326CrossRef
Zurück zum Zitat Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475CrossRef Box GEP, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475CrossRef
Zurück zum Zitat Britto-Costa PH, Ruotolo LAM (2011) Electrochemical removal of copper ions from aqueous solutions using a modulated current method. Sep Sci Technol 46:1205–1211CrossRef Britto-Costa PH, Ruotolo LAM (2011) Electrochemical removal of copper ions from aqueous solutions using a modulated current method. Sep Sci Technol 46:1205–1211CrossRef
Zurück zum Zitat Chen Y, Peng L, Zeng Q, Yang Y, Lei M, Song H, Chai L, Gu J (2015) Removal of trace Cd(II) from water with the manganese oxides/ACF composite electrode. Clean Technol Environ Policy 17:49–57CrossRef Chen Y, Peng L, Zeng Q, Yang Y, Lei M, Song H, Chai L, Gu J (2015) Removal of trace Cd(II) from water with the manganese oxides/ACF composite electrode. Clean Technol Environ Policy 17:49–57CrossRef
Zurück zum Zitat Colli AN, Bisang JM (2015) Comparison of the performance of flow-by three-dimensional cylindrical electrochemical reactors with inner or outer counter electrode under limiting current conditions. Electrochim Acta 154:468–475CrossRef Colli AN, Bisang JM (2015) Comparison of the performance of flow-by three-dimensional cylindrical electrochemical reactors with inner or outer counter electrode under limiting current conditions. Electrochim Acta 154:468–475CrossRef
Zurück zum Zitat Doherty T, Sunderland JG, Roberts EPL, Pickett DJ (1996) An improved model of potential and current distribution within a flow-through porous electrode. Electrochim Acta 41:519–526CrossRef Doherty T, Sunderland JG, Roberts EPL, Pickett DJ (1996) An improved model of potential and current distribution within a flow-through porous electrode. Electrochim Acta 41:519–526CrossRef
Zurück zum Zitat Ferreira BK (2008) Three-dimensional electrodes for the removal of metals from dilute solutions: a review. Miner Process Extr Metall Rev 29:330–371CrossRef Ferreira BK (2008) Three-dimensional electrodes for the removal of metals from dilute solutions: a review. Miner Process Extr Metall Rev 29:330–371CrossRef
Zurück zum Zitat Gabrielli C, Huet F, Sahar A, Valentin G (1994) Dynamic analysis of charge-transport in fluidized-bed electrodes—impedance techniques for electroactive beds. J Appl Electrochem 24:481–488CrossRef Gabrielli C, Huet F, Sahar A, Valentin G (1994) Dynamic analysis of charge-transport in fluidized-bed electrodes—impedance techniques for electroactive beds. J Appl Electrochem 24:481–488CrossRef
Zurück zum Zitat Gaunand A, Coeuret F (1978) Influence of relative electric-conductivity of 2 phases on potential distribution in flow-through porous-electrodes under limiting current conditions. Electrochim Acta 23:1197–1203CrossRef Gaunand A, Coeuret F (1978) Influence of relative electric-conductivity of 2 phases on potential distribution in flow-through porous-electrodes under limiting current conditions. Electrochim Acta 23:1197–1203CrossRef
Zurück zum Zitat Gilron J (2014) Water–energy nexus: matching sources and uses. Clean Technol Environ Policy 16:1471–1479CrossRef Gilron J (2014) Water–energy nexus: matching sources and uses. Clean Technol Environ Policy 16:1471–1479CrossRef
Zurück zum Zitat Gui M, Papp JK, Colburn AS, Meeks ND, Weaver B, Wilf I, Bhattacharyya D (2015) Engineered iron/iron oxide functionalized membranes for selenium and other toxic metal removal from power plant scrubber water. J Membr Sci 488:79–91CrossRef Gui M, Papp JK, Colburn AS, Meeks ND, Weaver B, Wilf I, Bhattacharyya D (2015) Engineered iron/iron oxide functionalized membranes for selenium and other toxic metal removal from power plant scrubber water. J Membr Sci 488:79–91CrossRef
Zurück zum Zitat Hutin D, Coeuret F (1977) Experimental-study of copper deposition in a fluidized-bed electrode. J Appl Electrochem 7:463–471CrossRef Hutin D, Coeuret F (1977) Experimental-study of copper deposition in a fluidized-bed electrode. J Appl Electrochem 7:463–471CrossRef
Zurück zum Zitat Lanza MRV, Bertazzoli R (2000) Removal of Zn(II) from chloride medium using a porous electrode: current penetration within the cathode. J Appl Electrochem 30:61–70CrossRef Lanza MRV, Bertazzoli R (2000) Removal of Zn(II) from chloride medium using a porous electrode: current penetration within the cathode. J Appl Electrochem 30:61–70CrossRef
Zurück zum Zitat Martins R, Britto-Costa PH, Ruotolo LAM (2012) Removal of toxic metals from aqueous effluents by electrodeposition in a spouted bed electrochemical reactor. Environ Technol 33:1123–1131CrossRef Martins R, Britto-Costa PH, Ruotolo LAM (2012) Removal of toxic metals from aqueous effluents by electrodeposition in a spouted bed electrochemical reactor. Environ Technol 33:1123–1131CrossRef
Zurück zum Zitat Maslii AI, Poddubnyi NP (1994) Determining the maximum thickness of a porous-electrode able to operate at the limiting diffusion current and an arbitrary electric-conductivity ratio between the solid and liquid-phases. Russ J Electrochem 30:810–814 Maslii AI, Poddubnyi NP (1994) Determining the maximum thickness of a porous-electrode able to operate at the limiting diffusion current and an arbitrary electric-conductivity ratio between the solid and liquid-phases. Russ J Electrochem 30:810–814
Zurück zum Zitat Meeks ND, Davis E, Jain M, Skandan G, Bhattacharyya D (2013) Mercury removal by thiol-functionalized metal oxide-carbon black sorbent and mixed-matrix membranes. Environ Prog Sustain Energy 32:705–714CrossRef Meeks ND, Davis E, Jain M, Skandan G, Bhattacharyya D (2013) Mercury removal by thiol-functionalized metal oxide-carbon black sorbent and mixed-matrix membranes. Environ Prog Sustain Energy 32:705–714CrossRef
Zurück zum Zitat Merrikhpour H, Jalali M (2013) Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technol Environ Policy 15:303–316CrossRef Merrikhpour H, Jalali M (2013) Comparative and competitive adsorption of cadmium, copper, nickel, and lead ions by Iranian natural zeolite. Clean Technol Environ Policy 15:303–316CrossRef
Zurück zum Zitat Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments. Wiley, New York Myers RH, Montgomery DC (2002) Response surface methodology: process and product optimization using designed experiments. Wiley, New York
Zurück zum Zitat Pletcher D, Walsh FC (1990) Industrial electrochemistry. Chapman and Hall, Cambridge Pletcher D, Walsh FC (1990) Industrial electrochemistry. Chapman and Hall, Cambridge
Zurück zum Zitat Ponce-de-Leon C, Low CTJ, Kear G, Walsh FC (2007) Strategies for the determination of the convective-diffusion limiting current from steady state linear sweep voltammetry. J Appl Electrochem 37:1261–1270CrossRef Ponce-de-Leon C, Low CTJ, Kear G, Walsh FC (2007) Strategies for the determination of the convective-diffusion limiting current from steady state linear sweep voltammetry. J Appl Electrochem 37:1261–1270CrossRef
Zurück zum Zitat Poroch-Seritan M, Gutt S, Gutt G, Cretescu I, Cojocaru C, Severin T (2011) Design of experiments for statistical modeling and multi-response optimization of nickel electroplating process. Chem Eng Res Des 89:136–147CrossRef Poroch-Seritan M, Gutt S, Gutt G, Cretescu I, Cojocaru C, Severin T (2011) Design of experiments for statistical modeling and multi-response optimization of nickel electroplating process. Chem Eng Res Des 89:136–147CrossRef
Zurück zum Zitat Rivera FF, Ponce-de-León C, Nava JL, Walsh FC (2015) The filter-press FM01-LC laboratory flow reactor and its applications. Electrochim Acta 163:338–354CrossRef Rivera FF, Ponce-de-León C, Nava JL, Walsh FC (2015) The filter-press FM01-LC laboratory flow reactor and its applications. Electrochim Acta 163:338–354CrossRef
Zurück zum Zitat Ruotolo LAM, Gubulin JC (2002) Electrodeposition of copper ions on fixed bed electrodes: kinetic and hydrodynamic study. Braz J Chem Eng 19:105–118CrossRef Ruotolo LAM, Gubulin JC (2002) Electrodeposition of copper ions on fixed bed electrodes: kinetic and hydrodynamic study. Braz J Chem Eng 19:105–118CrossRef
Zurück zum Zitat Ruotolo LAM, Gubulin JC (2005) A factorial-design study of the variables affecting the electrochemical reduction of Cr(VI) at polyaniline-modified electrodes. Chem Eng J 110:113–121CrossRef Ruotolo LAM, Gubulin JC (2005) A factorial-design study of the variables affecting the electrochemical reduction of Cr(VI) at polyaniline-modified electrodes. Chem Eng J 110:113–121CrossRef
Zurück zum Zitat Ruotolo LAM, Gubulin JC (2009) Optimization of Cr(VI) electroreduction from synthetic industrial wastewater using reticulated vitreous carbon electrodes modified with conducting polymers. Chem Eng J 149:334–339CrossRef Ruotolo LAM, Gubulin JC (2009) Optimization of Cr(VI) electroreduction from synthetic industrial wastewater using reticulated vitreous carbon electrodes modified with conducting polymers. Chem Eng J 149:334–339CrossRef
Zurück zum Zitat Ruotolo LAM, Gubulin JC (2011) A mathematical model to predict the electrode potential profile inside a polyaniline-modified reticulate vitreous carbon electrode operating in the potentiostatic reduction of Cr(VI). Chem Eng J 171:1170–1177CrossRef Ruotolo LAM, Gubulin JC (2011) A mathematical model to predict the electrode potential profile inside a polyaniline-modified reticulate vitreous carbon electrode operating in the potentiostatic reduction of Cr(VI). Chem Eng J 171:1170–1177CrossRef
Zurück zum Zitat Silva AP (1996) Copper electrodeposition in fluidized bed. Dissertation, Federal University of São Carlos, São Carlos Silva AP (1996) Copper electrodeposition in fluidized bed. Dissertation, Federal University of São Carlos, São Carlos
Zurück zum Zitat Silva-Martínez S, Roy S (2016) Metal recovery from low concentration solutions using a flow-by reactor under galvanostatic approach. Russ J Electrochem 52:1–77CrossRef Silva-Martínez S, Roy S (2016) Metal recovery from low concentration solutions using a flow-by reactor under galvanostatic approach. Russ J Electrochem 52:1–77CrossRef
Zurück zum Zitat Subramani A, Jacangelo JG (2015) Emerging desalination technologies for water treatment: a critical review. Water Res 75:164–187CrossRef Subramani A, Jacangelo JG (2015) Emerging desalination technologies for water treatment: a critical review. Water Res 75:164–187CrossRef
Zurück zum Zitat Thilakavathi R, Balasubramanian N, Basha CA (2009) Modeling electrowinning process in an expanded bed electrode. J Hazard Mater 162:154–160CrossRef Thilakavathi R, Balasubramanian N, Basha CA (2009) Modeling electrowinning process in an expanded bed electrode. J Hazard Mater 162:154–160CrossRef
Zurück zum Zitat Thilakavathi R, Balasubramanian N, Srinivasakannan C, Basha CA (2012) Modeling particulate bed electrode for metal recovery. Int J Electrochem Sci 7:1371–1385 Thilakavathi R, Balasubramanian N, Srinivasakannan C, Basha CA (2012) Modeling particulate bed electrode for metal recovery. Int J Electrochem Sci 7:1371–1385
Zurück zum Zitat Tonini GA, Farinos RM, Prado PFA, Ruotolo LAM (2013) Box–Behnken factorial design study of the variables affecting metal electrodeposition in membraneless fluidized bed electrodes. J Chem Technol Biotechnol 88:800–807CrossRef Tonini GA, Farinos RM, Prado PFA, Ruotolo LAM (2013) Box–Behnken factorial design study of the variables affecting metal electrodeposition in membraneless fluidized bed electrodes. J Chem Technol Biotechnol 88:800–807CrossRef
Zurück zum Zitat Volkman Y (1979) Optimization of the effectiveness of a 3-dimensional electrode with respect to its ohmic variables. Electrochim Acta 24:1145–1149CrossRef Volkman Y (1979) Optimization of the effectiveness of a 3-dimensional electrode with respect to its ohmic variables. Electrochim Acta 24:1145–1149CrossRef
Zurück zum Zitat Zamboulis D, Peleka EN, Lazaridis NK, Matis KA (2011) Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J Chem Technol Biotechnol 86:335–344CrossRef Zamboulis D, Peleka EN, Lazaridis NK, Matis KA (2011) Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J Chem Technol Biotechnol 86:335–344CrossRef
Zurück zum Zitat Zaviska F, Drogui P, Blais JF, Mercier G (2012) Electrochemical treatment of bisphenol-A using response surface methodology. J Appl Electrochem 42:95–109CrossRef Zaviska F, Drogui P, Blais JF, Mercier G (2012) Electrochemical treatment of bisphenol-A using response surface methodology. J Appl Electrochem 42:95–109CrossRef
Zurück zum Zitat Zhang C, Jiang Y, Li Y, Hu Z, Zhou L, Zhou M (2013) Three-dimensional electrochemical process for wastewater treatment: a general review. Chem Eng J 228:455–467CrossRef Zhang C, Jiang Y, Li Y, Hu Z, Zhou L, Zhou M (2013) Three-dimensional electrochemical process for wastewater treatment: a general review. Chem Eng J 228:455–467CrossRef
Metadaten
Titel
Heavy metal removal from simulated wastewater using electrochemical technology: optimization of copper electrodeposition in a membraneless fluidized bed electrode
verfasst von
George André Tonini
Luís Augusto Martins Ruotolo
Publikationsdatum
22.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 2/2017
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-016-1226-8

Weitere Artikel der Ausgabe 2/2017

Clean Technologies and Environmental Policy 2/2017 Zur Ausgabe