Skip to main content
Erschienen in: Thermal Engineering 2/2024

01.02.2024 | STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Improving the PGU-450T Unit’s Maneuverability while Retaining Its Reliability and Economic Efficiency in Variable Load Modes

verfasst von: E. K. Arakelyan, A. V. Andryushin, F. F. Pashchenko, S. V. Mezin, K. A. Andryushin, A. A. Kosoi

Erschienen in: Thermal Engineering | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The article addresses the problem of securing reliable and economically efficient operation of cogeneration combined cycle power plants (CCPPs) taking the PGU-450 unit as an example during its operation at partial loads and performing control of the electrical loads in the condensing mode and heat and electrical loads in the cogeneration mode. The main constraints hindering wide-scale involvement of CCPPs to control of electrical and heat loads are noted. The need to switch the gas turbines, which feature limited capacities of bearing variable loads, into a mild operation mode with shifting the main load on the steam turbine is pointed out. A technology of PGU-450 operation at partial loads is suggested: CCPP unloading in accordance with the operation manual to the gas turbine permissible base load, e.g., according to the environmental constraint during its operation in the condensing mode, and further decrease of the power unit electric output at a constant base power output of the gas turbines and heat recovery steam generators through decreasing the steam turbine output by applying bypass steam admission or shifting a part of the high-pressure cylinder (HPC) or the entire HPS, or the steam turbine as a whole to operate in the generator-driven mode. The article presents the results of applying various bypass steam admission configurations during the CCPP operation in the condensing mode, including when shifting part of the HPC or the entire HPC, and the steam turbine as a whole is shifted to operate in the generator-driven mode when the CCPP is shut down in a standby mode in passing off-peak load hours. It has been shown that the use of bypass steam admission during the CCPP operation in the cogeneration mode is more economically efficient than it is in the condensing mode. The article also shows the advantage, in terms of reliability and economic efficiency, of shifting the steam turbine to operate in the generator-driven mode instead of its shutdown during the PGU-450 unit’s operation in the gas turbine unit‒combined heat and power plant (GTU‒CHPP) mode and passing the electric load curve off-peak hours.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat STO (Standard) 59012820.27.100.004-2012. Standard for Participation of Combined Cycle Plants in Normalized Primary Control of Frequency and Automatic Secondary Control of Frequency and Active Power Flows (Sist. Oper. Edin. Energ. Sist., Moscow, 2012). STO (Standard) 59012820.27.100.004-2012. Standard for Participation of Combined Cycle Plants in Normalized Primary Control of Frequency and Automatic Secondary Control of Frequency and Active Power Flows (Sist. Oper. Edin. Energ. Sist., Moscow, 2012).
2.
Zurück zum Zitat Yu. A. Radin, Study and Improvement of Maneuverability of Combined Cycle Plants, Doctoral Dissertation in Engineering (All-Russia Thermal Engineering Inst., Moscow, 2013). Yu. A. Radin, Study and Improvement of Maneuverability of Combined Cycle Plants, Doctoral Dissertation in Engineering (All-Russia Thermal Engineering Inst., Moscow, 2013).
3.
Zurück zum Zitat S. V. Tsanev, V. D. Burov, and A. N. Remezov, Gas Turbine and Combined Cycle Facilities of Thermal Power Plants, 3rd ed. (Mosk. Energ. Inst., Moscow, 2009) [in Russian]. S. V. Tsanev, V. D. Burov, and A. N. Remezov, Gas Turbine and Combined Cycle Facilities of Thermal Power Plants, 3rd ed. (Mosk. Energ. Inst., Moscow, 2009) [in Russian].
4.
Zurück zum Zitat A. D. Trukhnii, “Investigating the operation of a heat-recovery combined-cycle (steam–gas) installation under partial loads: Part 1. The object and the method of investigation,” Therm. Eng. 46, 29–34 (1999). A. D. Trukhnii, “Investigating the operation of a heat-recovery combined-cycle (steam–gas) installation under partial loads: Part 1. The object and the method of investigation,” Therm. Eng. 46, 29–34 (1999).
5.
Zurück zum Zitat N. I. Davydov, N. V. Zorchenko, A. V. Davydov, and Yu. A. Radin, “Model studies for determining whether combined-cycle plants can participate in control of frequency and power flows in unified energy systems of Russia,” Therm. Eng. 56, 815–821 (2009).CrossRef N. I. Davydov, N. V. Zorchenko, A. V. Davydov, and Yu. A. Radin, “Model studies for determining whether combined-cycle plants can participate in control of frequency and power flows in unified energy systems of Russia,” Therm. Eng. 56, 815–821 (2009).CrossRef
6.
Zurück zum Zitat E. K. Arakelyan, A. V. Andryushin, S. Yu. Burtsev, K. A. Andriushin, and S. R. Hurshudyan, “Methodology for consideration of specific features of combined-cycle plants with the optimal sharing of the thermal and the electric loads at combined heat power plants with equipment of a complex configuration,” Therm. Eng. 62, 335–340 (2015). https://doi.org/10.1134/S0040601515050018CrossRef E. K. Arakelyan, A. V. Andryushin, S. Yu. Burtsev, K. A. Andriushin, and S. R. Hurshudyan, “Methodology for consideration of specific features of combined-cycle plants with the optimal sharing of the thermal and the electric loads at combined heat power plants with equipment of a complex configuration,” Therm. Eng. 62, 335–340 (2015). https://​doi.​org/​10.​1134/​S004060151505001​8CrossRef
7.
Zurück zum Zitat E. K. Arakelyan, S. V. Mezin, A. A. Kosoi, and Yu. Yu. Yagupova, “Technical possibility and economic feasibility of expanding the control range of a 450 MW CCGT unit by deep unloading of the steam turbine T-125/150,” Datchiki Sist., No. 8, 11–19 (2020). E. K. Arakelyan, S. V. Mezin, A. A. Kosoi, and Yu. Yu. Yagupova, “Technical possibility and economic feasibility of expanding the control range of a 450 MW CCGT unit by deep unloading of the steam turbine T-125/150,” Datchiki Sist., No. 8, 11–19 (2020).
8.
Zurück zum Zitat S. R. Khurshudyan, Optimization of Modes of a CCGT Unit when It is Participating in Power and Frequency Control in a Power System (on Example of a 450 MW CCGT Unit), Candidate’s Dissertation in Engineering (Moscow Power Engineering Inst., Moscow, 2014). S. R. Khurshudyan, Optimization of Modes of a CCGT Unit when It is Participating in Power and Frequency Control in a Power System (on Example of a 450 MW CCGT Unit), Candidate’s Dissertation in Engineering (Moscow Power Engineering Inst., Moscow, 2014).
9.
Zurück zum Zitat K. A. Andryushin, Choosing Optimal Operation Modes of CCGT Units for Heat Supply in Conditions of Variable Energy Consumption Schedules (on Example of a 450 MW CCGT Unit), Candidate’s Dissertation in Engineering (Moscow, 2019). K. A. Andryushin, Choosing Optimal Operation Modes of CCGT Units for Heat Supply in Conditions of Variable Energy Consumption Schedules (on Example of a 450 MW CCGT Unit), Candidate’s Dissertation in Engineering (Moscow, 2019).
10.
Zurück zum Zitat E. K. Arakelyan, “Ways to improve maneuverability characteristics of combined cycle plants in conditions of load control (on example of a 450 MW CCGT unit),” Izv. Vyssh. Uchebn. Zaved., Probl. Energ., No. 1, 58–73 (2023). E. K. Arakelyan, “Ways to improve maneuverability characteristics of combined cycle plants in conditions of load control (on example of a 450 MW CCGT unit),” Izv. Vyssh. Uchebn. Zaved., Probl. Energ., No. 1, 58–73 (2023).
11.
Zurück zum Zitat A. D. Trukhnii, L. N. Kobzarenko, A. A. Madoyan, and E. K. Arakelyan, “Low-cycle reliability of a K-200-130 turbine’s rotors with various methods to put them into night reserve,” Teploenergetika, No. 10, 50–54 (1982). A. D. Trukhnii, L. N. Kobzarenko, A. A. Madoyan, and E. K. Arakelyan, “Low-cycle reliability of a K-200-130 turbine’s rotors with various methods to put them into night reserve,” Teploenergetika, No. 10, 50–54 (1982).
12.
Zurück zum Zitat R. Z. Aminov and M. V. Garievskii, “The efficiency of combined-cycle CHPP with variable electric loads, taking into account the wear and tear of equipment,” Probl. Energ. 20 (7–8), 10–22 (2018). R. Z. Aminov and M. V. Garievskii, “The efficiency of combined-cycle CHPP with variable electric loads, taking into account the wear and tear of equipment,” Probl. Energ. 20 (7–8), 10–22 (2018).
13.
Zurück zum Zitat L. N. Kobzarenko, “Current problems of improving the maneuverability of TPPs by switching the turbine unit into motor mode and synchronous compensator mode,” Nadezhnost Bezop. Energ., No. 1 (4), 50–53 (2009). L. N. Kobzarenko, “Current problems of improving the maneuverability of TPPs by switching the turbine unit into motor mode and synchronous compensator mode,” Nadezhnost Bezop. Energ., No. 1 (4), 50–53 (2009).
14.
Zurück zum Zitat Yu. A. Radin, “Specific features of variable modes of CCGTs,” Nov. Teplosnabzh., No. 2 (174), 34–39 (2015). Yu. A. Radin, “Specific features of variable modes of CCGTs,” Nov. Teplosnabzh., No. 2 (174), 34–39 (2015).
15.
Zurück zum Zitat P. A. Berezinets, Development and Study of Cycles, Schematics and Operation Modes of Combined Cycle Plants, Doctoral Dissertation in Engineering (All-Russia Thermal Engineering Inst., Moscow, 2012). P. A. Berezinets, Development and Study of Cycles, Schematics and Operation Modes of Combined Cycle Plants, Doctoral Dissertation in Engineering (All-Russia Thermal Engineering Inst., Moscow, 2012).
17.
Zurück zum Zitat E. K. Arakelyan, A. V. Andryushin, S. Yu. Burtsev, and K. A. Andryushin, “Technical and economical feasibility of switching a steam turbine of a 450 MW CCGT unit into motor mode,” Elektr. Stn., No. 6, 25–29 (2017). E. K. Arakelyan, A. V. Andryushin, S. Yu. Burtsev, and K. A. Andryushin, “Technical and economical feasibility of switching a steam turbine of a 450 MW CCGT unit into motor mode,” Elektr. Stn., No. 6, 25–29 (2017).
19.
Zurück zum Zitat E. K. Arakelyan and V. A. Starshinov, Improving the Economy and Maneuverability of Equipment of Thermal Power Plants (Mosk. Energ. Inst., Moscow, 1993) [in Russian]. E. K. Arakelyan and V. A. Starshinov, Improving the Economy and Maneuverability of Equipment of Thermal Power Plants (Mosk. Energ. Inst., Moscow, 1993) [in Russian].
20.
Zurück zum Zitat V. A. Starshinov, L. V. Markaryan, A. L. Tserazov, and E. K. Arakelyan, “Power characteristics of TPP turbogenerators in the synchronous compensator mode,” Elektr. Stn., No. 2, 22–24 (1982). V. A. Starshinov, L. V. Markaryan, A. L. Tserazov, and E. K. Arakelyan, “Power characteristics of TPP turbogenerators in the synchronous compensator mode,” Elektr. Stn., No. 2, 22–24 (1982).
Metadaten
Titel
Improving the PGU-450T Unit’s Maneuverability while Retaining Its Reliability and Economic Efficiency in Variable Load Modes
verfasst von
E. K. Arakelyan
A. V. Andryushin
F. F. Pashchenko
S. V. Mezin
K. A. Andryushin
A. A. Kosoi
Publikationsdatum
01.02.2024
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 2/2024
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601524020022

Weitere Artikel der Ausgabe 2/2024

Thermal Engineering 2/2024 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Calculation of an Upgraded Rankine Cycle with Lithium Bromide Solution As a Working Flow

    Premium Partner