Skip to main content

2014 | OriginalPaper | Buchkapitel

9. Industrial Utilization of CO2: A Win–Win Solution

verfasst von : Nazim Muradov

Erschienen in: Liberating Energy from Carbon: Introduction to Decarbonization

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon capture and utilization (CCU) is an attractive carbon abatement strategy because of its potential for not only preventing CO2 emissions to the atmosphere but also converting CO2 to value-added products: a win–win solution. This approach can potentially make the carbon capture process more profitable and substantially reduce the investment needs for a rather expensive CO2 storage infrastructure. Over the last few years, interest in CCU has grown significantly, and many innovative technological approaches to the industrial CO2 utilization are under development, such as CO2 conversion to construction materials, plastics, fertilizers, fuels, etc. At the same time, the analysis of the CO2 utilization market shows that all existing industrial CO2 applications consume relatively small quantities of CO2, thus for the CCU to present a practical interest as a sink for anthropogenic CO2 emissions, the markets for the CO2-derived products would need to be increased by orders of magnitude. In this chapter, existing and emerging CO2 utilization technologies are analyzed in terms of their technological maturity, market size, permanence of CO2 storage, environmental impact, potential revenue generation, and carbon mitigation potential. The current status and outlook for CO2-to-fuel conversion technologies and CO2 utilization in algal systems are highlighted in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Non-captive CO2 use refers to the processes where CO2 is supplied from an external source, as opposed to captive use, wherein CO2 is only an intermediate product, and it is ultimately consumed in a later stage of the process.
 
2
Bulk CO2 is defined as unprocessed gaseous stream with CO2 content of more than 95 vol.%.
 
3
According to the US DOE definition, sustainable feedstocks are the feedstocks that (1) are managed to reduce required inputs of water and nutrients, (2) can potentially improve soil health and water quality, (3) may provide additional ecosystem services, and (4) the feedstock itself is not considered an invasive species where it will be grown [66].
 
Literatur
2.
Zurück zum Zitat SRI Consulting (2010) Chemical economics handbook. Menlo Park, California SRI Consulting (2010) Chemical economics handbook. Menlo Park, California
3.
Zurück zum Zitat Global CCS Institute (2011) The global status of CCS: 2011. Canberra, Australia. ISBN 978-0-9871863-0-0 Global CCS Institute (2011) The global status of CCS: 2011. Canberra, Australia. ISBN 978-0-9871863-0-0
4.
Zurück zum Zitat Global CCS Institute (2009) Strategic analysis of the global status of carbon capture and storage. Final report. http://www/globalccsinstitute.com/downloads/reports/2009/worley/foundation-report-1-rev0.pdf. Accessed 3 Aug 2010 Global CCS Institute (2009) Strategic analysis of the global status of carbon capture and storage. Final report. http://​www/​globalccsinstitu​te.​com/​downloads/​reports/​2009/​worley/​foundation-report-1-rev0.​pdf.​ Accessed 3 Aug 2010
5.
Zurück zum Zitat Intergovernmental Panel on Climate Change (2005) Carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. In: Metz B, Davidson O, de Coninck H et al (eds). Cambridge University Press, Cambridge and NY, USA Intergovernmental Panel on Climate Change (2005) Carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. In: Metz B, Davidson O, de Coninck H et al (eds). Cambridge University Press, Cambridge and NY, USA
6.
Zurück zum Zitat Stevens S, Kuuskraa J, Schraufnagel R (1996) Technology spurs growth of US coal bed methane. Oil Gas J 94:56–63 Stevens S, Kuuskraa J, Schraufnagel R (1996) Technology spurs growth of US coal bed methane. Oil Gas J 94:56–63
7.
Zurück zum Zitat Reeves S, Davis D, Oudinot A (2004) A technical and economic sensitivity study of enhanced coalbed methane recovery and carbon sequestration in coal. DOE topical report, March 2004. Washington DC Reeves S, Davis D, Oudinot A (2004) A technical and economic sensitivity study of enhanced coalbed methane recovery and carbon sequestration in coal. DOE topical report, March 2004. Washington DC
8.
Zurück zum Zitat Karmis M (2009) SECARB initiatives in central and southern Appalachia—progress and future opportunities. ECC annual meeting, 12 May 2009, Kingsport, Tennessee Karmis M (2009) SECARB initiatives in central and southern Appalachia—progress and future opportunities. ECC annual meeting, 12 May 2009, Kingsport, Tennessee
9.
Zurück zum Zitat Hernandez G, Bello R, McVay D et al (2006) Evaluation of the technical and economic feasibility of CO2 sequestration and enhanced coal-bed-methane recovery in Texas Low-Rank Coals. Soc Petrol Eng J. doi: 10.2118/100584-MS. ISBN 978-1-55563-233-5 Hernandez G, Bello R, McVay D et al (2006) Evaluation of the technical and economic feasibility of CO2 sequestration and enhanced coal-bed-methane recovery in Texas Low-Rank Coals. Soc Petrol Eng J. doi: 10.​2118/​100584-MS. ISBN 978-1-55563-233-5
10.
Zurück zum Zitat Hongguan Y, Guangzhu Z, Weitang F et al (2007) Predicted CO2 enhanced coal-bed methane recovery and CO2 sequestration in China. Int J Coal Geology 71:345–357CrossRef Hongguan Y, Guangzhu Z, Weitang F et al (2007) Predicted CO2 enhanced coal-bed methane recovery and CO2 sequestration in China. Int J Coal Geology 71:345–357CrossRef
11.
Zurück zum Zitat Hamelinck C, Faaij A, Turkenburg C et al (2002) CO2 enhanced coal-bed methane production in the Netherlands. Energy 27:647–674CrossRef Hamelinck C, Faaij A, Turkenburg C et al (2002) CO2 enhanced coal-bed methane production in the Netherlands. Energy 27:647–674CrossRef
13.
Zurück zum Zitat Randolph J, Saar M (2011) Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys Res Lett 38, L10401. doi:10.1029/2011GL047265 Randolph J, Saar M (2011) Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys Res Lett 38, L10401. doi:10.​1029/​2011GL047265
14.
Zurück zum Zitat Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polymer Sci B Polymer Lett 7:287–292CrossRef Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polymer Sci B Polymer Lett 7:287–292CrossRef
16.
Zurück zum Zitat Bomgardner M (2012) CO2 pursued as feedstock. Chem Eng News 90:22 Bomgardner M (2012) CO2 pursued as feedstock. Chem Eng News 90:22
17.
Zurück zum Zitat Priestnall M (2012) Making money from mineralization of CO2. Carbon Capture Journal. November–December 7–9 Priestnall M (2012) Making money from mineralization of CO2. Carbon Capture Journal. November–December 7–9
18.
Zurück zum Zitat Hunwick R (2009) A new, integrated, approach to mineralisation-based CCS. Mod Power Syst 29:25–28 Hunwick R (2009) A new, integrated, approach to mineralisation-based CCS. Mod Power Syst 29:25–28
21.
Zurück zum Zitat Herzog H (2002) Carbon sequestration via mineral carbonation: overview and assessment. MIT Laboratory for Energy and the Environment, Cambridge, MA Herzog H (2002) Carbon sequestration via mineral carbonation: overview and assessment. MIT Laboratory for Energy and the Environment, Cambridge, MA
22.
Zurück zum Zitat Bockris JO’M (1980) Energy options. Australia and New Zealand Book Company, Sydney Bockris JO’M (1980) Energy options. Australia and New Zealand Book Company, Sydney
23.
Zurück zum Zitat Olah G, Goeppert A, Prakash S (2006) Beyond oil and gas: the methanol economy. Wiley, Germany Olah G, Goeppert A, Prakash S (2006) Beyond oil and gas: the methanol economy. Wiley, Germany
26.
Zurück zum Zitat Kim J, Lee S, Lee S et al (2006) Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons. Catal Today 115:228–234CrossRef Kim J, Lee S, Lee S et al (2006) Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons. Catal Today 115:228–234CrossRef
27.
Zurück zum Zitat Dorner R, Hardy D, Williams F et al (2009) Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst. Energy Fuel 23:4190–4195CrossRef Dorner R, Hardy D, Williams F et al (2009) Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst. Energy Fuel 23:4190–4195CrossRef
28.
Zurück zum Zitat Stechel E, Miller J (2013) Re-energizing CO2 to fuels with the sun: issues of efficiency, scale, and economics. J CO2 Util 1:28–36CrossRef Stechel E, Miller J (2013) Re-energizing CO2 to fuels with the sun: issues of efficiency, scale, and economics. J CO2 Util 1:28–36CrossRef
30.
Zurück zum Zitat Traynor A, Jensen R (2002) Direct solar reduction of CO2 to fuel: first prototype results. Ind Eng Chem Res 41:1935–1939CrossRef Traynor A, Jensen R (2002) Direct solar reduction of CO2 to fuel: first prototype results. Ind Eng Chem Res 41:1935–1939CrossRef
31.
Zurück zum Zitat Jacoby M (2013) The hidden value of carbon dioxide. Chem Eng News 91:21–22 Jacoby M (2013) The hidden value of carbon dioxide. Chem Eng News 91:21–22
32.
Zurück zum Zitat Kumar B, Smieja J, Kubiak C (2010) Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem C 114:14220–14223CrossRef Kumar B, Smieja J, Kubiak C (2010) Photoreduction of CO2 on p-type silicon using Re(bipy-But)(CO)3Cl: photovoltages exceeding 600 mV for the selective reduction of CO2 to CO. J Phys Chem C 114:14220–14223CrossRef
33.
Zurück zum Zitat Kaneco S, Katsumara H, Suzuki T et al (2006) Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes. Appl Catal B Environ 64:139–145CrossRef Kaneco S, Katsumara H, Suzuki T et al (2006) Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes. Appl Catal B Environ 64:139–145CrossRef
34.
Zurück zum Zitat Anpo M (2013) Photocatalytic reduction of CO2 on highly dispersed Ti-oxide catalysts as a model of artificial photosynthesis. J CO2 Util 1:8–17CrossRef Anpo M (2013) Photocatalytic reduction of CO2 on highly dispersed Ti-oxide catalysts as a model of artificial photosynthesis. J CO2 Util 1:8–17CrossRef
35.
Zurück zum Zitat Kuhl K, Cave E, Abram D (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059CrossRef Kuhl K, Cave E, Abram D (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5:7050–7059CrossRef
36.
Zurück zum Zitat DiMeglio J, Rosenthal J (2013) Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J Am Chem Soc 135:8798–8801CrossRef DiMeglio J, Rosenthal J (2013) Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst. J Am Chem Soc 135:8798–8801CrossRef
38.
Zurück zum Zitat Lvov S (2012) Hydrogen via electrolysis: a key to utilization of renewable energy resources. In: Muradov N, Veziroglu N (eds) Carbon-neutral fuels and energy carriers. CRC Press, Boca Raton Lvov S (2012) Hydrogen via electrolysis: a key to utilization of renewable energy resources. In: Muradov N, Veziroglu N (eds) Carbon-neutral fuels and energy carriers. CRC Press, Boca Raton
39.
Zurück zum Zitat Centi G, Perathoner S (2012) Solar production of fuels from water and CO2. In: Muradov N, Veziroglu N (eds) Carbon-neutral fuels and energy carriers. CRC Press, Boca Raton Centi G, Perathoner S (2012) Solar production of fuels from water and CO2. In: Muradov N, Veziroglu N (eds) Carbon-neutral fuels and energy carriers. CRC Press, Boca Raton
40.
Zurück zum Zitat Hu B, Guild C, Suib S (2013) Thermal, electrochemical and photochemical conversion of CO2 to fuels and value-added products. J CO2 Util 1:18–27CrossRefMATH Hu B, Guild C, Suib S (2013) Thermal, electrochemical and photochemical conversion of CO2 to fuels and value-added products. J CO2 Util 1:18–27CrossRefMATH
41.
Zurück zum Zitat Centi G, Quadrelli E, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731CrossRef Centi G, Quadrelli E, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711–1731CrossRef
42.
Zurück zum Zitat Jiang Z, Xiao T, Kuznetsov V et al (2010) Turning carbon dioxide into fuel. Phil Trans R Soc A 368:3343–3364CrossRef Jiang Z, Xiao T, Kuznetsov V et al (2010) Turning carbon dioxide into fuel. Phil Trans R Soc A 368:3343–3364CrossRef
43.
Zurück zum Zitat Yu D, Zhang Y (2010) Copper- and copper–N-heterocyclic carbene-catalyzed C─H activating carboxylation of terminal alkynes with CO2 at ambient conditions. Proc Natl Acad Sci U S A 107:20184–20189CrossRef Yu D, Zhang Y (2010) Copper- and copper–N-heterocyclic carbene-catalyzed C─H activating carboxylation of terminal alkynes with CO2 at ambient conditions. Proc Natl Acad Sci U S A 107:20184–20189CrossRef
44.
Zurück zum Zitat Yang H, Gu Y, Deng Y et al (2002) Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem Commun 274–275 Yang H, Gu Y, Deng Y et al (2002) Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem Commun 274–275
45.
Zurück zum Zitat Olah J, Toeroek B, Joschek J et al (2012) Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide−Al2Cl6/Al system. J Am Chem Soc 124:11379–11391CrossRef Olah J, Toeroek B, Joschek J et al (2012) Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide−Al2Cl6/Al system. J Am Chem Soc 124:11379–11391CrossRef
47.
Zurück zum Zitat Ogura K (2013) Electrochemical reduction of carbon dioxide to ethylene: mechanistic approach. J CO2 Util 1:43–49CrossRef Ogura K (2013) Electrochemical reduction of carbon dioxide to ethylene: mechanistic approach. J CO2 Util 1:43–49CrossRef
48.
Zurück zum Zitat Hallman M, Steinberg M (1999) Greenhouse gas CO 2 mitigation. CRC Press, Boca Raton Hallman M, Steinberg M (1999) Greenhouse gas CO 2 mitigation. CRC Press, Boca Raton
49.
Zurück zum Zitat U.S. Department of Energy (2010) National algal biofuels technology roadmap. Office of energy efficiency and renewable energy, biomass program. algal_biofuels_roadmap.pdf., http://biomass.energy.gov. Accessed 19 Dec 2010 U.S. Department of Energy (2010) National algal biofuels technology roadmap. Office of energy efficiency and renewable energy, biomass program. algal_biofuels_roadmap.pdf., http://​biomass.​energy.​gov. Accessed 19 Dec 2010
50.
Zurück zum Zitat Falkowski P, Katz M, Knoll A et al (2004) The evolution of modern eukaryotic phytopnkton. Science 305:354–360CrossRef Falkowski P, Katz M, Knoll A et al (2004) The evolution of modern eukaryotic phytopnkton. Science 305:354–360CrossRef
51.
Zurück zum Zitat Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRef Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRef
52.
Zurück zum Zitat Chu W, Norazmi M, Phang S (2003) Fatty acid composition of some malaysian seaweeds. Malays J Sci 22:21–27 Chu W, Norazmi M, Phang S (2003) Fatty acid composition of some malaysian seaweeds. Malays J Sci 22:21–27
53.
Zurück zum Zitat Christi Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRef Christi Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRef
54.
Zurück zum Zitat Eberhard S, Finazzi G, Wollman F (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515CrossRef Eberhard S, Finazzi G, Wollman F (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515CrossRef
55.
Zurück zum Zitat Polle J, Kanakagiri S, Jin E et al (2002) Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrogen Energy 27:1257–1264CrossRef Polle J, Kanakagiri S, Jin E et al (2002) Truncated chlorophyll antenna size of the photosystems—a practical method to improve microalgal productivity and hydrogen production in mass culture. Int J Hydrogen Energy 27:1257–1264CrossRef
56.
57.
Zurück zum Zitat Nakamura T (2004) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae, Technical report to DOE, NETL, No. PSI-1356, December 2004. Morgantown, WV Nakamura T (2004) Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae, Technical report to DOE, NETL, No. PSI-1356, December 2004. Morgantown, WV
58.
Zurück zum Zitat Velea S, Dragos N, Serban S et al (2008) Biological sequestration of carbon dioxide from thermal power plant emissions by absorption in microalgal culture media. Romanian Biotechnol Lett 14:4485–4500 Velea S, Dragos N, Serban S et al (2008) Biological sequestration of carbon dioxide from thermal power plant emissions by absorption in microalgal culture media. Romanian Biotechnol Lett 14:4485–4500
59.
Zurück zum Zitat Benson B, Gutierrez-Wing T, Rusch A (2007) The development of a mechanistic model to investigate the impacts of the light dynamics on algal productivity in a hydraulically integrated serial turbidostat algal reactor. Aquaculture Eng 36:198–211CrossRef Benson B, Gutierrez-Wing T, Rusch A (2007) The development of a mechanistic model to investigate the impacts of the light dynamics on algal productivity in a hydraulically integrated serial turbidostat algal reactor. Aquaculture Eng 36:198–211CrossRef
60.
Zurück zum Zitat Wilson W, Van Etten J, Allen M (2009) The phycodnaviridae: the story of how tiny giants rule the world. Lesser known large dsDNA viruses, vol 328. Springer, Berlin, pp 1–42CrossRef Wilson W, Van Etten J, Allen M (2009) The phycodnaviridae: the story of how tiny giants rule the world. Lesser known large dsDNA viruses, vol 328. Springer, Berlin, pp 1–42CrossRef
61.
Zurück zum Zitat Molina Grima E, Belarbi E, Acién Fernández F et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRef Molina Grima E, Belarbi E, Acién Fernández F et al (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRef
62.
Zurück zum Zitat Illman A, Scragg A, Shales S (2000) Increase in chlorella strains calorific values when grown in low nitrogen media. Enzym Microb Tech 27:631–635CrossRef Illman A, Scragg A, Shales S (2000) Increase in chlorella strains calorific values when grown in low nitrogen media. Enzym Microb Tech 27:631–635CrossRef
63.
Zurück zum Zitat Denery J, Dragull K, Tang C et al (2004) Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal Chim Acta 501:175–181CrossRef Denery J, Dragull K, Tang C et al (2004) Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal Chim Acta 501:175–181CrossRef
64.
Zurück zum Zitat Herrero M, Cifuentes A, Ibanez E (2006) Sub-and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem 98:136–148CrossRef Herrero M, Cifuentes A, Ibanez E (2006) Sub-and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chem 98:136–148CrossRef
65.
Zurück zum Zitat Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496CrossRef Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496CrossRef
67.
Zurück zum Zitat Hon-Nami K (2006) A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata. Appl Biochem Biotechnol 131:808–828CrossRef Hon-Nami K (2006) A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata. Appl Biochem Biotechnol 131:808–828CrossRef
68.
Zurück zum Zitat Hirano A, Ueda R, Hirayama S et al (1997) CO22 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy-Oxford 22:137–142CrossRef Hirano A, Ueda R, Hirayama S et al (1997) CO22 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy-Oxford 22:137–142CrossRef
70.
Zurück zum Zitat Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRef Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRef
71.
72.
Zurück zum Zitat Muradov N, Fidalgo B, Gujar A et al (2010) Pyrolysis of fast-growing aquatic biomass—Lemna minor (duckweed): characterization of pyrolysis products. Bioresour Technol 101:8424–8428CrossRef Muradov N, Fidalgo B, Gujar A et al (2010) Pyrolysis of fast-growing aquatic biomass—Lemna minor (duckweed): characterization of pyrolysis products. Bioresour Technol 101:8424–8428CrossRef
73.
Zurück zum Zitat Okabe K, Murata K, Nakanishi M et al (2009) Fischer-Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catal Lett 128:171–176CrossRef Okabe K, Murata K, Nakanishi M et al (2009) Fischer-Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catal Lett 128:171–176CrossRef
74.
Zurück zum Zitat Patil V, Tran K, Giselroed H (2008) Towards sustainable production of biofuels from microalgae. Int J Molecular Sciences 9:1188–1195CrossRef Patil V, Tran K, Giselroed H (2008) Towards sustainable production of biofuels from microalgae. Int J Molecular Sciences 9:1188–1195CrossRef
75.
Zurück zum Zitat Goudriaan F, Van de Beld B, Boerefijn F et al (2000) Thermal efficiency of the HTU® process for biomass liquefaction. In: Bridgwater A (ed) Proceedings of progress in thermochemical biomass conversion, Tyrol, Austria, Sep 17–22, 2000. Blackwell Science, Oxford, p 1312–1325 Goudriaan F, Van de Beld B, Boerefijn F et al (2000) Thermal efficiency of the HTU® process for biomass liquefaction. In: Bridgwater A (ed) Proceedings of progress in thermochemical biomass conversion, Tyrol, Austria, Sep 17–22, 2000. Blackwell Science, Oxford, p 1312–1325
76.
Zurück zum Zitat Sawayama S, Inoue S, Dote Y et al (1995) CO2 fixation and oil production through microalga. Energy Convers Manag 36:729–731CrossRef Sawayama S, Inoue S, Dote Y et al (1995) CO2 fixation and oil production through microalga. Energy Convers Manag 36:729–731CrossRef
77.
Zurück zum Zitat Mendes R (2007) Supercritical fluid extraction of active compounds from algae. In: Martinez J (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. Taylor and Francis, Boca Raton, pp 189–213CrossRef Mendes R (2007) Supercritical fluid extraction of active compounds from algae. In: Martinez J (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. Taylor and Francis, Boca Raton, pp 189–213CrossRef
78.
Zurück zum Zitat Hawash S, Kamal N, Zaher F et al (2009) Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel 88:579–582CrossRef Hawash S, Kamal N, Zaher F et al (2009) Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel 88:579–582CrossRef
79.
Zurück zum Zitat Vergara-Fernandez A, Vargas G, Alarcon N et al (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32:338–344CrossRef Vergara-Fernandez A, Vargas G, Alarcon N et al (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32:338–344CrossRef
80.
Zurück zum Zitat Hossain A, Salleh A, Boyce A et al (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4:250–254CrossRef Hossain A, Salleh A, Boyce A et al (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4:250–254CrossRef
81.
Zurück zum Zitat Kalva A, Sivasankar T, Moholkar V (2008) Physical mechanism of ultrasound-assisted synthesis of biodiesel. Ind Eng Chem Res 48:534–544CrossRef Kalva A, Sivasankar T, Moholkar V (2008) Physical mechanism of ultrasound-assisted synthesis of biodiesel. Ind Eng Chem Res 48:534–544CrossRef
82.
Zurück zum Zitat Svensson J, Adlercreutz P (2008) Identification of triacylglycerols in the enzymatic transesterification of rapeseed and butter oil. Eur J Lipid Sci Technol 110:1007–1013CrossRef Svensson J, Adlercreutz P (2008) Identification of triacylglycerols in the enzymatic transesterification of rapeseed and butter oil. Eur J Lipid Sci Technol 110:1007–1013CrossRef
83.
Zurück zum Zitat Soriano N, Venditti R, Argyropoulos D (2009) Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification. Fuel 88:560–565CrossRef Soriano N, Venditti R, Argyropoulos D (2009) Biodiesel synthesis via homogeneous Lewis acid-catalyzed transesterification. Fuel 88:560–565CrossRef
84.
Zurück zum Zitat Mooibroek H, Oosterhuis N, Giuseppin M et al (2007) Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl Microbiol Biotechnol 77:257–267CrossRef Mooibroek H, Oosterhuis N, Giuseppin M et al (2007) Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl Microbiol Biotechnol 77:257–267CrossRef
85.
Zurück zum Zitat Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRef Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRef
86.
Zurück zum Zitat Brune D, Lundquist T, Benemann J (2009) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil-fuels and animal feeds. J Environ Eng 135:1136–1144CrossRef Brune D, Lundquist T, Benemann J (2009) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil-fuels and animal feeds. J Environ Eng 135:1136–1144CrossRef
89.
Zurück zum Zitat Rubin E, Meyer L, de Coninck H (2005) Technical summary. In: Metz B, Davidson O, de Connick H (eds) Carbon dioxide capture and storage. Cambridge University Press, Cambridge, pp 17–49 Rubin E, Meyer L, de Coninck H (2005) Technical summary. In: Metz B, Davidson O, de Connick H (eds) Carbon dioxide capture and storage. Cambridge University Press, Cambridge, pp 17–49
90.
Zurück zum Zitat US Department of Energy (1998) A look back at the U.S. department of energy’s aquatic species program: biodiesel from algae. NREL/TP-580–24190. Technical report under, contract No. DE-AC36–83CH10093, 1998 US Department of Energy (1998) A look back at the U.S. department of energy’s aquatic species program: biodiesel from algae. NREL/TP-580–24190. Technical report under, contract No. DE-AC36–83CH10093, 1998
96.
Zurück zum Zitat Styring P, de Coninck H, Reith H et al (2011) Carbon capture and utilisation in the green economy. Publisher: The Centre for Low Carbon Futures. Report no. 501 Styring P, de Coninck H, Reith H et al (2011) Carbon capture and utilisation in the green economy. Publisher: The Centre for Low Carbon Futures. Report no. 501
Metadaten
Titel
Industrial Utilization of CO2: A Win–Win Solution
verfasst von
Nazim Muradov
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-0545-4_9