Skip to main content

2014 | OriginalPaper | Buchkapitel

8. Transition to Low- and Zero-Carbon Energy and Fuels

verfasst von : Nazim Muradov

Erschienen in: Liberating Energy from Carbon: Introduction to Decarbonization

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Switching from high-carbon to low- and zero-carbon energy sources and fuels is considered Holy Grail of the decarbonization policy. The evolutionary model of the substitution of primary energy sources predicts that methane followed by hydrogen will take over the energy market during the current century. The interplay of three energy systems based on methane, electricity, and hydrogen (dubbed Decarbonization Triangle) can greatly facilitate and expand the decarbonization of global economy. Many challenges hindering the expansion of intermittent renewable energy sources (solar and wind) could potentially be addressed by means of interconnected electricity, methane, and hydrogen grids that form a large integrated low-carbon energy network. Due to the complimentary and synergistic nature of the basic elements of the networks, in combination, they can provide more energy services per unit of primary energy with associated economic and environmental benefits. The main strategies and pathways to transitioning to low-to-zero carbon energy systems and the prerequisites for building Methane and Hydrogen Economies are analyzed in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this chapter and elsewhere, “zero-carbon” energy sources relate to non-carbon sources (e.g., solar, wind, geo), as well as, zero net CO2 sources, such as biomass and biofuels.
 
Literatur
1.
Zurück zum Zitat Muradov N (2013) Decarbonization at crossroads: the cessation of the positive historical trend or a temporary detour? Energy Environ Sci 6:1060–1073CrossRef Muradov N (2013) Decarbonization at crossroads: the cessation of the positive historical trend or a temporary detour? Energy Environ Sci 6:1060–1073CrossRef
2.
Zurück zum Zitat Winter C-J (2012) Hydrogen energy—abundant, efficient, clean: a debate over the energy-system-of-change. In: Muradov N, Veziroglu N (eds) Carbon-neutral fuels and energy carriers. CRC, Boca Raton, FL, pp 115–202 Winter C-J (2012) Hydrogen energy—abundant, efficient, clean: a debate over the energy-system-of-change. In: Muradov N, Veziroglu N (eds) Carbon-neutral fuels and energy carriers. CRC, Boca Raton, FL, pp 115–202
3.
Zurück zum Zitat Kruse B, Grinna S, Buch C (2002) Hydrogen. The Bellona Foundation Publ., Oslo, Norway. ISBN 82-92318-05-4 Kruse B, Grinna S, Buch C (2002) Hydrogen. The Bellona Foundation Publ., Oslo, Norway. ISBN 82-92318-05-4
6.
Zurück zum Zitat Spath P, Mann M (2000) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory Report. NREL/TP-570-27637, Golden, Colorado Spath P, Mann M (2000) Life cycle assessment of hydrogen production via natural gas steam reforming. National Renewable Energy Laboratory Report. NREL/TP-570-27637, Golden, Colorado
9.
Zurück zum Zitat Kaneco S, Katsumata H, Suzuki T et al (2006) Energy Fuel 20:409–414CrossRef Kaneco S, Katsumata H, Suzuki T et al (2006) Energy Fuel 20:409–414CrossRef
10.
Zurück zum Zitat Hoffmann P (2013) HyUnder workshops on underground H2 gas storage launch 2-year effort. Hydrogen Fuel Cell Lett 28:2 Hoffmann P (2013) HyUnder workshops on underground H2 gas storage launch 2-year effort. Hydrogen Fuel Cell Lett 28:2
12.
Zurück zum Zitat Hoffmann P (2011) World’s first renewable hydrogen hybrid power plant starts production. Hydrogen Fuel Cell Lett 26(11):1–2 Hoffmann P (2011) World’s first renewable hydrogen hybrid power plant starts production. Hydrogen Fuel Cell Lett 26(11):1–2
13.
Zurück zum Zitat Johnson J (2013) The natural gas advantage. Chem Eng News 91:29 Johnson J (2013) The natural gas advantage. Chem Eng News 91:29
19.
Zurück zum Zitat De Falco M, Basile A (2012) Editorial. Int J Hydrogen Energy 37:11487CrossRef De Falco M, Basile A (2012) Editorial. Int J Hydrogen Energy 37:11487CrossRef
20.
Zurück zum Zitat Moreno F, Munoz M, Arroyo J et al (2012) Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends. Int J Hydrogen Energy 37:11495–11503CrossRef Moreno F, Munoz M, Arroyo J et al (2012) Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends. Int J Hydrogen Energy 37:11495–11503CrossRef
21.
Zurück zum Zitat Klell M, Eichlseder H, Sartory M (2012) Mixtures of hydrogen and methane in the internal combustion engine—synergies, potential and regulations. Int J Hydrogen Energy 37:11531–11540CrossRef Klell M, Eichlseder H, Sartory M (2012) Mixtures of hydrogen and methane in the internal combustion engine—synergies, potential and regulations. Int J Hydrogen Energy 37:11531–11540CrossRef
22.
Zurück zum Zitat Villante C, Genovese A (2012) Hydromethane: a bridge towards the hydrogen economy or an unsustainable promise? Int J Hydrogen Energy 37:11541–11548CrossRef Villante C, Genovese A (2012) Hydromethane: a bridge towards the hydrogen economy or an unsustainable promise? Int J Hydrogen Energy 37:11541–11548CrossRef
23.
Zurück zum Zitat International Energy Agency (2011) CO2 emissions from fuel combustion, IEA report, 2011 ed. Paris, France International Energy Agency (2011) CO2 emissions from fuel combustion, IEA report, 2011 ed. Paris, France
24.
Zurück zum Zitat International Energy Agency (2011) World Energy Outlook. Are we entering a golden age of gas? IEA, Paris, France International Energy Agency (2011) World Energy Outlook. Are we entering a golden age of gas? IEA, Paris, France
25.
Zurück zum Zitat Budischak C, Sewell D, Thomson H et al (2013) Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9 % of the time. J Power Sources 225:60–74CrossRef Budischak C, Sewell D, Thomson H et al (2013) Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9 % of the time. J Power Sources 225:60–74CrossRef
26.
Zurück zum Zitat Ausubel J, Grubler A, Nakićenović N (1988) Carbon dioxide emissions in a methane economy. Clim Change 12:245–263CrossRef Ausubel J, Grubler A, Nakićenović N (1988) Carbon dioxide emissions in a methane economy. Clim Change 12:245–263CrossRef
29.
Zurück zum Zitat Laubach S, Reed R, Olson J et al (2004) Co-evolution of crack-seal texture and fracture porosity in sedimentary rocks: cathodoluminescence observations of regional fractures. J Struct Geol 26:967–982CrossRef Laubach S, Reed R, Olson J et al (2004) Co-evolution of crack-seal texture and fracture porosity in sedimentary rocks: cathodoluminescence observations of regional fractures. J Struct Geol 26:967–982CrossRef
32.
Zurück zum Zitat Scott G (1997) Method for monitoring the hydraulic fracturing of a subterranean formation, US Patent 5,635,712. US PTO, Washington, DC Scott G (1997) Method for monitoring the hydraulic fracturing of a subterranean formation, US Patent 5,635,712. US PTO, Washington, DC
37.
Zurück zum Zitat US Senate Committee on Environment and Public Works (2009) Obama administration: no documented cases of hydraulic fracturing contamination. 8 Dec 2009. http://epw.senate.gov/public/index.cfm?FuseAction=PressRoom.PressReleases&ContentRecord_id=70289BE8-802A-23AD-479D-CA2D6F6B36CD. Accessed 26 Feb 2012 US Senate Committee on Environment and Public Works (2009) Obama administration: no documented cases of hydraulic fracturing contamination. 8 Dec 2009. http://​epw.​senate.​gov/​public/​index.​cfm?​FuseAction=​PressRoom.​PressReleases&​ContentRecord_​id=​70289BE8-802A-23AD-479D-CA2D6F6B36CD.​ Accessed 26 Feb 2012
39.
Zurück zum Zitat Osborn S, Vengosh A, Warner N et al (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci U S A 108:8172–8176CrossRef Osborn S, Vengosh A, Warner N et al (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci U S A 108:8172–8176CrossRef
40.
Zurück zum Zitat Jackson R, Vengosh A, Sarrahet T et al (2013) Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1221635110 Jackson R, Vengosh A, Sarrahet T et al (2013) Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proc Natl Acad Sci U S A. doi:10.​1073/​pnas.​1221635110
41.
Zurück zum Zitat Johnson J (2013) Methane found in drinking water. Chem Eng News 91:15 Johnson J (2013) Methane found in drinking water. Chem Eng News 91:15
46.
Zurück zum Zitat Hess G (2011) EPA to regulate shale gas waste. Chem Eng News 89:28 Hess G (2011) EPA to regulate shale gas waste. Chem Eng News 89:28
47.
Zurück zum Zitat Yang H, Flower R, Thompson J (2013) Shale-gas plans threaten China’s water resources. Science 340:1288CrossRef Yang H, Flower R, Thompson J (2013) Shale-gas plans threaten China’s water resources. Science 340:1288CrossRef
51.
Zurück zum Zitat Jenkins J (2013) Natural gas boom rewrites the energy rules. Discovery. January: 31 Jenkins J (2013) Natural gas boom rewrites the energy rules. Discovery. January: 31
53.
54.
Zurück zum Zitat Van der Elst N, Savage H, Keranen K et al (2013) Enhanced remote earthquake triggering at fluid-injection sites in the Midwestern United States. Science 341:164CrossRef Van der Elst N, Savage H, Keranen K et al (2013) Enhanced remote earthquake triggering at fluid-injection sites in the Midwestern United States. Science 341:164CrossRef
57.
Zurück zum Zitat Rogers M, Dillenbeck R, Eid R (2004) Society of petroleum engineers. Paper 90829 Rogers M, Dillenbeck R, Eid R (2004) Society of petroleum engineers. Paper 90829
59.
Zurück zum Zitat Hess G (2011) Energy panel sees risks of gas drilling. Chem Eng News 89:25 Hess G (2011) Energy panel sees risks of gas drilling. Chem Eng News 89:25
61.
Zurück zum Zitat Hess G (2011) EPA takes aim at fracking emissions. Chem Eng News 89:26 Hess G (2011) EPA takes aim at fracking emissions. Chem Eng News 89:26
63.
Zurück zum Zitat International Energy Agency (2012) Medium term gas market report. OECD/IEA, Paris International Energy Agency (2012) Medium term gas market report. OECD/IEA, Paris
65.
Zurück zum Zitat Hoffmann P (2011) Cheap natural gas as fuel cell enabler. Hydrogen Fuel Cell Lett 26:6–7 Hoffmann P (2011) Cheap natural gas as fuel cell enabler. Hydrogen Fuel Cell Lett 26:6–7
67.
68.
Zurück zum Zitat Gas Technology Institute (2012) Unlocking the global potential of natural gas annual report. GTI-13/0008.7-13 ABS2m. 2013. Des Plains, IL, USA Gas Technology Institute (2012) Unlocking the global potential of natural gas annual report. GTI-13/0008.7-13 ABS2m. 2013. Des Plains, IL, USA
70.
Zurück zum Zitat US Environmental Protection Agency (2012) Inventory of U.S. Greenhouse gas emissions and sinks: 1990–2011. US-GHG-Inventory-2011-Chapter-1-Introduction.pdf. Accessed 18 Dec 2012 US Environmental Protection Agency (2012) Inventory of U.S. Greenhouse gas emissions and sinks: 1990–2011. US-GHG-Inventory-2011-Chapter-1-Introduction.pdf. Accessed 18 Dec 2012
71.
Zurück zum Zitat US Environmental Protection Agency (2010) GHG emissions. Technical note on the 1990–2009 inventory estimates for natural gas systems, Washington, DC US Environmental Protection Agency (2010) GHG emissions. Technical note on the 1990–2009 inventory estimates for natural gas systems, Washington, DC
72.
76.
Zurück zum Zitat Howarth R, Ingrafea A (2011) Should fracking stop? Extracting gas from shale increases the availability of this resource, but the health and environmental risks may be too high. Nature 477:271–275CrossRef Howarth R, Ingrafea A (2011) Should fracking stop? Extracting gas from shale increases the availability of this resource, but the health and environmental risks may be too high. Nature 477:271–275CrossRef
79.
Zurück zum Zitat Cathles L, Brown L, Taam M et al (2012) A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro, and Anthony Ingraffea. Clim Change 113:525–535. doi:10.1007/s10584-011-0333-0 CrossRef Cathles L, Brown L, Taam M et al (2012) A commentary on “The greenhouse-gas footprint of natural gas in shale formations” by R.W. Howarth, R. Santoro, and Anthony Ingraffea. Clim Change 113:525–535. doi:10.​1007/​s10584-011-0333-0 CrossRef
80.
Zurück zum Zitat Howarth R, Shindell D, Santoro R et al (2012) Methane emission from natural gas systems. Background paper prepared for the National Climate Assessment. Reference No: 2011–0003. 25 Feb 2012 Howarth R, Shindell D, Santoro R et al (2012) Methane emission from natural gas systems. Background paper prepared for the National Climate Assessment. Reference No: 2011–0003. 25 Feb 2012
81.
Zurück zum Zitat Shindell D, Faluvegi G, Koch D et al (2009) Improved attribution of climate forcing to emissions. Science 326:716–718CrossRef Shindell D, Faluvegi G, Koch D et al (2009) Improved attribution of climate forcing to emissions. Science 326:716–718CrossRef
82.
Zurück zum Zitat US General Accountability Office (2010) Federal oil and gas leases: opportunities exist to capture vented and flared natural gas. Which would increase royalty payments and reduce greenhouse gases. GAO-11-34 US General Accountability Office, Washington, DC. http://www.gao.gov/new.items/d1134.pdf. Accessed 16 Apr 2012 US General Accountability Office (2010) Federal oil and gas leases: opportunities exist to capture vented and flared natural gas. Which would increase royalty payments and reduce greenhouse gases. GAO-11-34 US General Accountability Office, Washington, DC. http://​www.​gao.​gov/​new.​items/​d1134.​pdf. Accessed 16 Apr 2012
89.
Zurück zum Zitat Hetland J, Kvamsdal H, Haugen G et al (2009) Integrating a full carbon capture scheme onto a 450 MWe NGCC electric power generation hub for offshore operations: presenting the Sevan GTW concept. Appl Energy 86:2298–2307CrossRef Hetland J, Kvamsdal H, Haugen G et al (2009) Integrating a full carbon capture scheme onto a 450 MWe NGCC electric power generation hub for offshore operations: presenting the Sevan GTW concept. Appl Energy 86:2298–2307CrossRef
90.
Zurück zum Zitat Pershad H (2012) CCS for gas—results of Element Energy study. Carbon Capture J. 13–15 November–December Pershad H (2012) CCS for gas—results of Element Energy study. Carbon Capture J. 13–15 November–December
91.
Zurück zum Zitat Muradov N (1993) How to produce hydrogen from fossil fuels without CO2 emission. Int J Hydrogen Energy 18:211–215CrossRef Muradov N (1993) How to produce hydrogen from fossil fuels without CO2 emission. Int J Hydrogen Energy 18:211–215CrossRef
92.
Zurück zum Zitat Choudhary T, Sivadinarayana C, Chusuei C et al (2001) Hydrogen production via catalytic decomposition of methane. J Catal 199:9–18CrossRef Choudhary T, Sivadinarayana C, Chusuei C et al (2001) Hydrogen production via catalytic decomposition of methane. J Catal 199:9–18CrossRef
93.
Zurück zum Zitat Steinberg M (1999) Fossil fuel decarbonization technology for mitigating global warming. Int J Hydrogen Energy 24:771–777CrossRef Steinberg M (1999) Fossil fuel decarbonization technology for mitigating global warming. Int J Hydrogen Energy 24:771–777CrossRef
94.
Zurück zum Zitat Muradov N (2001) Hydrogen via methane decomposition: an application to decarbonization of fossil fuels. Int J Hydrogen Energy 26:1165–1175CrossRef Muradov N (2001) Hydrogen via methane decomposition: an application to decarbonization of fossil fuels. Int J Hydrogen Energy 26:1165–1175CrossRef
95.
Zurück zum Zitat Lynum S, Hildrum R, Hox K et al (1998) Kværner based technologies for environmentally friendly energy and hydrogen production. Proc. 12th World Hydrogen Energy Conf. Buenos Aires, Argentina. p 697 Lynum S, Hildrum R, Hox K et al (1998) Kværner based technologies for environmentally friendly energy and hydrogen production. Proc. 12th World Hydrogen Energy Conf. Buenos Aires, Argentina. p 697
97.
Zurück zum Zitat Mordkovich V, Dolgova E, Karaeva A et al (2007) Synthesis of carbon nanotubes by catalytic conversion of methane: competition between active components of catalyst. Carbon 45:62–69CrossRef Mordkovich V, Dolgova E, Karaeva A et al (2007) Synthesis of carbon nanotubes by catalytic conversion of methane: competition between active components of catalyst. Carbon 45:62–69CrossRef
98.
Zurück zum Zitat Muradov N, Smith F, T-Raissi A (2005) Catalytic activity of carbons for methane decomposition reaction. Catal Today 102(103):225–233CrossRef Muradov N, Smith F, T-Raissi A (2005) Catalytic activity of carbons for methane decomposition reaction. Catal Today 102(103):225–233CrossRef
99.
Zurück zum Zitat Serrano D, Botas J, Pizarro P, Guil-Lopez R, Gomez G (2008) Ordered mesoporous carbons as highly active catalysts for hydrogen production by CH4 decomposition. Chem Commun 6585–6587 Serrano D, Botas J, Pizarro P, Guil-Lopez R, Gomez G (2008) Ordered mesoporous carbons as highly active catalysts for hydrogen production by CH4 decomposition. Chem Commun 6585–6587
100.
Zurück zum Zitat Suelves I, Pinilla J, Lazaro M, Moliner R (2008) Carbonaceous materials as catalysts for decomposition of methane. Chem Eng J 140:432–438CrossRef Suelves I, Pinilla J, Lazaro M, Moliner R (2008) Carbonaceous materials as catalysts for decomposition of methane. Chem Eng J 140:432–438CrossRef
101.
Zurück zum Zitat Muradov N, Choi P, Smith F et al (2010) Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels. J Power Sources 195:1112–1121CrossRef Muradov N, Choi P, Smith F et al (2010) Integration of direct carbon and hydrogen fuel cells for highly efficient power generation from hydrocarbon fuels. J Power Sources 195:1112–1121CrossRef
102.
Zurück zum Zitat Muradov N, Veziroglu N (2008) “Green” path from fossil to hydrogen economy. An overview of carbon-neutral technologies. Int J Hydrogen Energy 33:6804–6839CrossRef Muradov N, Veziroglu N (2008) “Green” path from fossil to hydrogen economy. An overview of carbon-neutral technologies. Int J Hydrogen Energy 33:6804–6839CrossRef
103.
Zurück zum Zitat Gaudernack B, Lynum S (1996) Hydrogen from natural gas without release of CO2 to the atmosphere. Proc. 11th World Hydrogen Energy Conference, Stuttgart, Germany Gaudernack B, Lynum S (1996) Hydrogen from natural gas without release of CO2 to the atmosphere. Proc. 11th World Hydrogen Energy Conference, Stuttgart, Germany
104.
Zurück zum Zitat Muradov N, Veziroglu N (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energy 30:225–237CrossRef Muradov N, Veziroglu N (2005) From hydrocarbon to hydrogen-carbon to hydrogen economy. Int J Hydrogen Energy 30:225–237CrossRef
105.
Zurück zum Zitat Halloran J (2008) Extraction of hydrogen from fossil fuels with production of solid carbon materials. Int J Hydrogen Energy 33:2218–2224CrossRef Halloran J (2008) Extraction of hydrogen from fossil fuels with production of solid carbon materials. Int J Hydrogen Energy 33:2218–2224CrossRef
106.
Zurück zum Zitat Ng Y (2012) Natural gas key to a renewable energy future. Power Eng 116:84–86 Ng Y (2012) Natural gas key to a renewable energy future. Power Eng 116:84–86
107.
Zurück zum Zitat Lorenzini G, Biserni C, Flacco G (2010) Solar thermal and biomass energy. WIT, Southampton Lorenzini G, Biserni C, Flacco G (2010) Solar thermal and biomass energy. WIT, Southampton
111.
Zurück zum Zitat Williams J, DeBenedictis A, Ghanadan R et al (2012) The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335:53–59CrossRef Williams J, DeBenedictis A, Ghanadan R et al (2012) The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335:53–59CrossRef
112.
Zurück zum Zitat International Energy Agency (2010) Energy technology perspectives 2010—scenarios and strategies to 2050. ISBN 978-92-64-08597-8, 2010 International Energy Agency (2010) Energy technology perspectives 2010scenarios and strategies to 2050. ISBN 978-92-64-08597-8, 2010
115.
Zurück zum Zitat Ausubel J (1996) Can technology spare the Earth? Evolving efficiencies in our use of resources suggest that technology can restore the environment even as population grows. Am Sci Mag 84:166–178 Ausubel J (1996) Can technology spare the Earth? Evolving efficiencies in our use of resources suggest that technology can restore the environment even as population grows. Am Sci Mag 84:166–178
117.
Zurück zum Zitat Satyapal S (2013) Commentary from the US DOE director of fuel cell technologies. IAHE Newsletter, v.5, Summer 2013. http://www.IAHEnewsletter_summer2013-1.pdf. Accessed 28 Sep 2013 Satyapal S (2013) Commentary from the US DOE director of fuel cell technologies. IAHE Newsletter, v.5, Summer 2013. http://​www.​IAHEnewsletter_​summer2013-1.​pdf.​ Accessed 28 Sep 2013
118.
Zurück zum Zitat Sterling S (2012) Hydrogen on the rise. A renewable energy based storage solution, North American Clean energy. September/October, 2012, p. 100, 101, nacleanenergy.com. Accessed 5 Feb 2013 Sterling S (2012) Hydrogen on the rise. A renewable energy based storage solution, North American Clean energy. September/October, 2012, p. 100, 101, nacleanenergy.com. Accessed 5 Feb 2013
119.
Zurück zum Zitat Bomgardner M (2013) Germany to get H2 fueling network. Chem Eng News 91:24 Bomgardner M (2013) Germany to get H2 fueling network. Chem Eng News 91:24
120.
Zurück zum Zitat Hoffmann P (2011) Argonne builds experimental high-efficiency hydrogen I.C. engine. Hydrogen Fuel Cell Lett 26:7 Hoffmann P (2011) Argonne builds experimental high-efficiency hydrogen I.C. engine. Hydrogen Fuel Cell Lett 26:7
121.
Zurück zum Zitat US Department of Energy (2013) Hydrogen production research and development. Office of Energy Efficiency and Renewable Energy. Funding opportunity announcement: DE-FOA-0000826. https://eere-Exchange.energy.gov. Accessed 26 Nov 2013 US Department of Energy (2013) Hydrogen production research and development. Office of Energy Efficiency and Renewable Energy. Funding opportunity announcement: DE-FOA-0000826. https://​eere-Exchange.​energy.​gov. Accessed 26 Nov 2013
122.
Zurück zum Zitat Ball M, Wietschel M (eds) (2009) Hydrogen economy: opportunities and challenges. Cambridge University Press, Cambridge, UK Ball M, Wietschel M (eds) (2009) Hydrogen economy: opportunities and challenges. Cambridge University Press, Cambridge, UK
123.
Zurück zum Zitat Sigfusson T (2008) Planet hydrogen—the taming of the proton. Coxmoor Publ, Oxford, UK, p 218 Sigfusson T (2008) Planet hydrogen—the taming of the proton. Coxmoor Publ, Oxford, UK, p 218
124.
Zurück zum Zitat Gupta R (ed) (2009) Hydrogen fuel. Production, transport and storage. CRC, Boca Raton, USA Gupta R (ed) (2009) Hydrogen fuel. Production, transport and storage. CRC, Boca Raton, USA
Metadaten
Titel
Transition to Low- and Zero-Carbon Energy and Fuels
verfasst von
Nazim Muradov
Copyright-Jahr
2014
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-0545-4_8