Skip to main content
Erschienen in:
Buchtitelbild

2024 | OriginalPaper | Buchkapitel

1. Introduction and State of the Art

verfasst von : Alberto Traverso, Avinash Renuke, Anestis I. Kalfas

Erschienen in: Tesla Turbine

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter resumes the main special features of Tesla turbines, encompassing the state-of-the-art both at modelling and experimental levels, and discussing the fundamentals of its principle of operation. Differently from all other types of dynamic machines, Tesla turbines exchange work thanks to frictional forces instead of pressure forces.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dixon, S. L. (2005). Fluid mechanics and thermodynamics of turbomachinery (5th ed.). Elsevier. Dixon, S. L. (2005). Fluid mechanics and thermodynamics of turbomachinery (5th ed.). Elsevier.
2.
Zurück zum Zitat Dean, R. C. (1959). On the necessity of unsteady flow in fluid machines. Journal of Basic Engineering ASME Transactions, 81, 24–28.CrossRef Dean, R. C. (1959). On the necessity of unsteady flow in fluid machines. Journal of Basic Engineering ASME Transactions, 81, 24–28.CrossRef
3.
Zurück zum Zitat Greitzer, E. M. (1986). An introduction to unsteady flow in turbomachines. In Advanced topics in turbomachinery. Principal Lecture Series No. 2. (D. Japikse (Ed.)) (pp. 2.1–2.29). Concepts ETI. Greitzer, E. M. (1986). An introduction to unsteady flow in turbomachines. In Advanced topics in turbomachinery. Principal Lecture Series No. 2. (D. Japikse (Ed.)) (pp. 2.1–2.29). Concepts ETI.
4.
Zurück zum Zitat Traverso, A., Barberis, S., Larosa, L., and Silvestri, P., 2018, “Reverse Cycle Machine Provided with a Turbine”, World Patent, WO2018/127445A1. Traverso, A., Barberis, S., Larosa, L., and Silvestri, P., 2018, “Reverse Cycle Machine Provided with a Turbine”, World Patent, WO2018/127445A1.
5.
Zurück zum Zitat Balje, O. E. (1981). Turbomachines, a guide to design, selection and theory. Wiley.CrossRef Balje, O. E. (1981). Turbomachines, a guide to design, selection and theory. Wiley.CrossRef
6.
Zurück zum Zitat Renuke, A., Vannoni, A., Traverso, A., & Pascenti, M. (2019). Experimental and numerical investigation of small-scale tesla turbines. ASME Journal of Engineering Gas Turbines Power, 141(12), 121011.CrossRef Renuke, A., Vannoni, A., Traverso, A., & Pascenti, M. (2019). Experimental and numerical investigation of small-scale tesla turbines. ASME Journal of Engineering Gas Turbines Power, 141(12), 121011.CrossRef
7.
Zurück zum Zitat Renuke, A., Reggio, F., Pascenti, M., Silvestri, P., & Traverso, A. (2020). Experimental investigation on a 3 kW tesla expander with high speed generator. ASME Paper GT2020-14572. Renuke, A., Reggio, F., Pascenti, M., Silvestri, P., & Traverso, A. (2020). Experimental investigation on a 3 kW tesla expander with high speed generator. ASME Paper GT2020-14572.
8.
Zurück zum Zitat Renuke, A., Reggio, F., Traverso, A., Pascenti, M. (2022). Experimental characterization of losses in bladeless turbine prototype. Journal of Engineering for Gas Turbines and Power, 144, 041009_1–8. Renuke, A., Reggio, F., Traverso, A., Pascenti, M. (2022). Experimental characterization of losses in bladeless turbine prototype. Journal of Engineering for Gas Turbines and Power, 144, 041009_1–8.
9.
Zurück zum Zitat Renuke, A., Traverso, A., Reggio, F., Pascenti, M., & Silvestri, P. (2023). Performance investigation of stator-less and blade-less radial expander. ASME Paper GT2023–101192. Renuke, A., Traverso, A., Reggio, F., Pascenti, M., & Silvestri, P. (2023). Performance investigation of stator-less and blade-less radial expander. ASME Paper GT2023–101192.
10.
Zurück zum Zitat Tesla, N. (1913). Turbine. US Patent 1061206. Tesla, N. (1913). Turbine. US Patent 1061206.
11.
Zurück zum Zitat Tesla, N. (1913). Fluid Propulsion. US Patent 1061142. Tesla, N. (1913). Fluid Propulsion. US Patent 1061142.
12.
Zurück zum Zitat Armstrong, J. H. (1952). An investigation of the performance of a modified tesla turbine. Ph.D. Thesis, Faculty of the Division of Graduate Studies, Georgia Institute of Technology. Armstrong, J. H. (1952). An investigation of the performance of a modified tesla turbine. Ph.D. Thesis, Faculty of the Division of Graduate Studies, Georgia Institute of Technology.
13.
Zurück zum Zitat Beans, E. W. (1961). Performance characteristics of a friction disk turbine. Ph.D Thesis, The Pennsylvania State University. Beans, E. W. (1961). Performance characteristics of a friction disk turbine. Ph.D Thesis, The Pennsylvania State University.
14.
Zurück zum Zitat Rice, W. (1965). An analytical and experimental investigation of multiple disk turbines. Journal of Engineering for Power, 87(1), 29–36.CrossRef Rice, W. (1965). An analytical and experimental investigation of multiple disk turbines. Journal of Engineering for Power, 87(1), 29–36.CrossRef
15.
Zurück zum Zitat Hoya, G. P., & Guha, A. (2008). The design of a test rig and study of the performance and efficiency of a tesla disc turbine. Journal of Power and Energy, 223, Part A, 451–465. Hoya, G. P., & Guha, A. (2008). The design of a test rig and study of the performance and efficiency of a tesla disc turbine. Journal of Power and Energy, 223, Part A, 451–465.
16.
Zurück zum Zitat Guha, A., & Smiley, B. (2009). Experiment and analysis for an improved design of the inlet and nozzle in tesla disc turbines. Journal of Power and Energy, 224, Part A, 261–277. Guha, A., & Smiley, B. (2009). Experiment and analysis for an improved design of the inlet and nozzle in tesla disc turbines. Journal of Power and Energy, 224, Part A, 261–277.
17.
Zurück zum Zitat Krishnan V. (2015). Design and fabrication of cm–scale tesla turbines. Ph.D. Thesis, Berkeley University. Krishnan V. (2015). Design and fabrication of cm–scale tesla turbines. Ph.D. Thesis, Berkeley University.
18.
Zurück zum Zitat Peshlakai, A. (2012). Challenging the versatility of tesla turbine-working fluid variations and turbine performance. Master Thesis, Arizona State University. Peshlakai, A. (2012). Challenging the versatility of tesla turbine-working fluid variations and turbine performance. Master Thesis, Arizona State University.
19.
Zurück zum Zitat Holland, K. (2015). Design, construction and testing of a tesla turbine. Master Thesis, Laurentian University Sudbury. Holland, K. (2015). Design, construction and testing of a tesla turbine. Master Thesis, Laurentian University Sudbury.
20.
Zurück zum Zitat Li, R., Huanran, W., Erren, Y., Meng, L., & Weigang, N. (2017). Experimental study on bladeless turbine using incompressible working medium. Advances in Mechanical Engineering, 9(1), 1–12.CrossRef Li, R., Huanran, W., Erren, Y., Meng, L., & Weigang, N. (2017). Experimental study on bladeless turbine using incompressible working medium. Advances in Mechanical Engineering, 9(1), 1–12.CrossRef
21.
Zurück zum Zitat Manfrida, G., Pacini, L., & Talluri, L. (2017). A revised tesla turbine concept for ORC applications. Energy, 129, 1055–1062. Manfrida, G., Pacini, L., & Talluri, L. (2017). A revised tesla turbine concept for ORC applications. Energy, 129, 1055–1062.
22.
Zurück zum Zitat Rusin, K., Wroblewski, W., & Strozik, M. (2018). Experimental and numerical investigation of tesla turbine. Journal of Physics: Conf. series, 1101, 012029. Rusin, K., Wroblewski, W., & Strozik, M. (2018). Experimental and numerical investigation of tesla turbine. Journal of Physics: Conf. series, 1101, 012029.
23.
Zurück zum Zitat Manfrida, G., Pacini, L., & Talluri, L. (2018). An upgraded tesla turbine concept for ORC applications. Energy, 158, 33–40.CrossRef Manfrida, G., Pacini, L., & Talluri, L. (2018). An upgraded tesla turbine concept for ORC applications. Energy, 158, 33–40.CrossRef
24.
Zurück zum Zitat Bloudíček, P., & Paloušek, D. (2007). Design of tesla turbine. Brno, Česká republika. Bloudíček, P., & Paloušek, D. (2007). Design of tesla turbine. Brno, Česká republika.
25.
Zurück zum Zitat Vedavalli, K., Zoghora, I., & Michel, M. (2011). A micro tesla turbine for power generation from low pressure heads and evaporation driven flows. IEEE, Transducers’11, 1851–1854. Vedavalli, K., Zoghora, I., & Michel, M. (2011). A micro tesla turbine for power generation from low pressure heads and evaporation driven flows. IEEE, Transducers’11, 1851–1854.
26.
Zurück zum Zitat Schosser, C. (2016). Experimental and numerical investigations and optimisation of tesla radial turbines. Master Thesis, Universität der Bundeswehr München Fakultät für Luft und Raumfahrttechnik Institut für Thermodynamik. Schosser, C. (2016). Experimental and numerical investigations and optimisation of tesla radial turbines. Master Thesis, Universität der Bundeswehr München Fakultät für Luft und Raumfahrttechnik Institut für Thermodynamik.
27.
Zurück zum Zitat Okamoto, K., & Goto, K. (2017). Experimental investigation of inflow condition effects on tesla turbine performance. ISABE, International Symposium on Air Breathing Engine, 1–11. Okamoto, K., & Goto, K. (2017). Experimental investigation of inflow condition effects on tesla turbine performance. ISABE, International Symposium on Air Breathing Engine, 1–11.
28.
Zurück zum Zitat Ladino, A. F. R. (2004). Numerical simulation of the flow field in a friction-type turbine (tesla turbine). Thesis, Vienna University of Technology. Ladino, A. F. R. (2004). Numerical simulation of the flow field in a friction-type turbine (tesla turbine). Thesis, Vienna University of Technology.
29.
Zurück zum Zitat Ladino, A. F .R. (2004). Numerical simulation of the flow field in a friction–type turbine (tesla turbine). Technical report, Vienna University of Technology. Ladino, A. F .R. (2004). Numerical simulation of the flow field in a friction–type turbine (tesla turbine). Technical report, Vienna University of Technology.
30.
Zurück zum Zitat Lemma, E., Deam, R. T., Toncich, D., & Collins, R. (2008). Characterisation of a small viscous flow turbine. Experimental Thermal and Fluid Science, 33, 96–105.CrossRef Lemma, E., Deam, R. T., Toncich, D., & Collins, R. (2008). Characterisation of a small viscous flow turbine. Experimental Thermal and Fluid Science, 33, 96–105.CrossRef
31.
Zurück zum Zitat Lampart, P., Kosowski, K., Piwowarski, M., & Jedrzejewski, L. (2009). Design analysis of tesla micro–turbine operating on a low–boiling medium. Polish Maritime Research, 28–33. Lampart, P., Kosowski, K., Piwowarski, M., & Jedrzejewski, L. (2009). Design analysis of tesla micro–turbine operating on a low–boiling medium. Polish Maritime Research, 28–33.
32.
Zurück zum Zitat Rusin, K., Wróblewski, W., & Strozik, M. (2018). Experimental and numerical investigations of tesla turbine. Journal of Physics Conf. Series, 1101, 012029.CrossRef Rusin, K., Wróblewski, W., & Strozik, M. (2018). Experimental and numerical investigations of tesla turbine. Journal of Physics Conf. Series, 1101, 012029.CrossRef
33.
Zurück zum Zitat Qi, W., Deng, W., Chi, Z., Hu, L., Yuan, Q., & Feng, Z. (2019). Influence of disc tip geometry on the aerodynamic performance and flow characteristics of multichannel tesla turbines. Energies, 12, 572.CrossRef Qi, W., Deng, W., Chi, Z., Hu, L., Yuan, Q., & Feng, Z. (2019). Influence of disc tip geometry on the aerodynamic performance and flow characteristics of multichannel tesla turbines. Energies, 12, 572.CrossRef
34.
Zurück zum Zitat Wang, B., Okamoto, K., Yamaguchi, K., & Teramoto, S. (2014). Loss mechanisms in shear-force pump with multiple corotating disks. Journal of Fluids Engineering, 136, 081101–081111.CrossRef Wang, B., Okamoto, K., Yamaguchi, K., & Teramoto, S. (2014). Loss mechanisms in shear-force pump with multiple corotating disks. Journal of Fluids Engineering, 136, 081101–081111.CrossRef
35.
Zurück zum Zitat Sengupta, S., & Guha, A. (2008). Inflow-rotor interaction in Tesla disc turbines: Effects of discrete inflows, finite disc thickness, and radial clearance on the fluid dynamics and performance of the turbine. Proc IMechE Part A: Journal of Power and Energy, 1–21 Sengupta, S., & Guha, A. (2008). Inflow-rotor interaction in Tesla disc turbines: Effects of discrete inflows, finite disc thickness, and radial clearance on the fluid dynamics and performance of the turbine. Proc IMechE Part A: Journal of Power and Energy, 1–21
36.
Zurück zum Zitat Steidel, R., & Weiss, H. (1976). Performance test of a bladeless turbine for geothermal applications. Technical Report, UCID–17068, California Univ., Livermore (USA), Lawrence Livermore Lab. Steidel, R., & Weiss, H. (1976). Performance test of a bladeless turbine for geothermal applications. Technical Report, UCID–17068, California Univ., Livermore (USA), Lawrence Livermore Lab.
37.
Zurück zum Zitat Patel, N., & Schmidt, D. D. (2002). Biomass boundary layer turbine power system. In Proceedings of International Joint Power Generation Conference. Patel, N., & Schmidt, D. D. (2002). Biomass boundary layer turbine power system. In Proceedings of International Joint Power Generation Conference.
38.
Zurück zum Zitat Deam, R. T., Lemma, E., Mace, B., & Collins, R. (2008). On scaling down turbines to millimeter size. Transaction of ASME Journal of Engineering for Gas Turbines and Power, 130, 1–9. Deam, R. T., Lemma, E., Mace, B., & Collins, R. (2008). On scaling down turbines to millimeter size. Transaction of ASME Journal of Engineering for Gas Turbines and Power, 130, 1–9.
39.
Zurück zum Zitat Valente, A. (2008). Installation for pressure reduction of hydrocarbon gases in a near isothermal manner. In Proceedings of Abu Dhabi International Petroleum Exhibition and Conference. Valente, A. (2008). Installation for pressure reduction of hydrocarbon gases in a near isothermal manner. In Proceedings of Abu Dhabi International Petroleum Exhibition and Conference.
40.
Zurück zum Zitat Crowell, R. (2009). Generation of electricity utilizing solar hot water collectors and a tesla turbine. In Proceedings of the ASME 3rd International Conference of Energy Sustainability. Crowell, R. (2009). Generation of electricity utilizing solar hot water collectors and a tesla turbine. In Proceedings of the ASME 3rd International Conference of Energy Sustainability.
41.
Zurück zum Zitat Cirincione, N. (2011). Design, construction and commissioning of an organic rankine cycle waste heat recovery system with a tesla hybrid turbine expander. Thesis, Colorado State University. Cirincione, N. (2011). Design, construction and commissioning of an organic rankine cycle waste heat recovery system with a tesla hybrid turbine expander. Thesis, Colorado State University.
42.
Zurück zum Zitat Ho-Yan, B. P. (2011). Tesla turbine for pico hydro applications. Guelph Engineering Journal, 4, 1–8 Ho-Yan, B. P. (2011). Tesla turbine for pico hydro applications. Guelph Engineering Journal, 4, 1–8
43.
Zurück zum Zitat Zhao, D., & Khoo, J. (2013). Rainwater and air driven 40 mm bladeless electromagnetic energy harvester. Applied Physics Letters, 103, 1–4. Zhao, D., & Khoo, J. (2013). Rainwater and air driven 40 mm bladeless electromagnetic energy harvester. Applied Physics Letters, 103, 1–4.
44.
Zurück zum Zitat Ruiz, M. (2015). Characterization of single phase and two–phase heat and momentum transport in a spiralling radial inflow micro channel heat sink. Ph.D. thesis, Berkeley University. Ruiz, M. (2015). Characterization of single phase and two–phase heat and momentum transport in a spiralling radial inflow micro channel heat sink. Ph.D. thesis, Berkeley University.
45.
Zurück zum Zitat Thawichsri, K., & Nilnont, W. (2015). A comparing on the use of centrifugal turbine and tesla turbine in an application of organic rankine cycle. International Journal of Advanced Culture Technology, 3, 58–66.CrossRef Thawichsri, K., & Nilnont, W. (2015). A comparing on the use of centrifugal turbine and tesla turbine in an application of organic rankine cycle. International Journal of Advanced Culture Technology, 3, 58–66.CrossRef
46.
Zurück zum Zitat Bankar, N., Chavan, A., Dhole, S., & Patunkar, P. (2016). Development of hybrid tesla turbine and current trends in application of tesla turbine. International Journal for Technological Research in Engineering, 3, 1504–1507. Bankar, N., Chavan, A., Dhole, S., & Patunkar, P. (2016). Development of hybrid tesla turbine and current trends in application of tesla turbine. International Journal for Technological Research in Engineering, 3, 1504–1507.
47.
Zurück zum Zitat Umashankar, M., Anirudh, V., & Pishey, K. (2017). Investigation of tesla turbine. International Journal of Latest Technology in Engineering, Management and Applied Science, 6, 23–27. Umashankar, M., Anirudh, V., & Pishey, K. (2017). Investigation of tesla turbine. International Journal of Latest Technology in Engineering, Management and Applied Science, 6, 23–27.
48.
Zurück zum Zitat Renuke, A., & Traverso, A. (2022). Performance assessment of tesla expander using 3-D numerical simulation. Journal of Engineering for Gas Turbines and Power, 144, 111006_1–14. Renuke, A., & Traverso, A. (2022). Performance assessment of tesla expander using 3-D numerical simulation. Journal of Engineering for Gas Turbines and Power, 144, 111006_1–14.
49.
Zurück zum Zitat Renuke, A., Traverso, A., Pascenti, M., Silvestri, P., & Reggio, F. (2023). Ultra-efficient bladeless turbomachinery. World patent no. WO2023170497A1. Renuke, A., Traverso, A., Pascenti, M., Silvestri, P., & Reggio, F. (2023). Ultra-efficient bladeless turbomachinery. World patent no. WO2023170497A1.
50.
Zurück zum Zitat Traverso, A., Silvestri, P., Reggio, F., & Efstathiadis, T. (2019). Theoretical and experimental investigation on rotor dynamic behaviour of bladeless turbine for innovative cycles. ASME Paper GT2019–91708. Traverso, A., Silvestri, P., Reggio, F., & Efstathiadis, T. (2019). Theoretical and experimental investigation on rotor dynamic behaviour of bladeless turbine for innovative cycles. ASME Paper GT2019–91708.
Metadaten
Titel
Introduction and State of the Art
verfasst von
Alberto Traverso
Avinash Renuke
Anestis I. Kalfas
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-56258-7_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.