Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 8/2023

15.09.2022

A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing

verfasst von: Jia Liu, Jiafeng Ye, Daniel Silva Izquierdo, Aleksandr Vinel, Nima Shamsaei, Shuai Shao

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser beam powder bed fusion (LB-PBF) is a widely-used metal additive manufacturing process due to its high potential for fabrication flexibility and quality. Its process and performance optimization are key to improving product quality and promote further adoption of LB-PBF. In this article, the state-of-the-art machine learning (ML) applications for process and performance optimization in LB-PBF are reviewed. In these applications, ML is used to model the process-structure–property relationships in a data-driven way and optimize process parameters for high-quality fabrication. We review these applications in terms of their modeled relationships by ML (e.g., process—structure, process—property, or structure—property) and categorize the ML algorithms into interpretable ML, conventional ML, and deep ML according to interpretability and accuracy. This way may be particularly useful for practitioners as a comprehensive reference for selecting the ML algorithms according to the particular needs. It is observed that of the three types of ML above, conventional ML has been applied in process and performance optimization the most due to its balanced performance in terms of model accuracy and interpretability. To explore the power of ML in discovering new knowledge and insights, interpretation with additional steps is often needed for complex models arising from conventional ML and deep ML, such as model-agnostic methods or sensitivity analysis. In the future, enhancing the interpretability of ML, standardizing a systemic procedure for ML, and developing a collaborative platform to share data and findings will be critical to promote the integration of ML in LB-PBF applications on a large scale.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aboulkhair, N. T., Everitt, N. M., Ashcroft, I., & Tuck, C. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 1–4, 77–86.CrossRef Aboulkhair, N. T., Everitt, N. M., Ashcroft, I., & Tuck, C. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 1–4, 77–86.CrossRef
Zurück zum Zitat Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.CrossRef Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.CrossRef
Zurück zum Zitat Aoyagi, K., Wang, H., Sudo, H., & Chiba, A. (2019). Simple method to construct process maps for additive manufacturing using a support vector machine. Additive Manufacturing, 27, 353–362.CrossRef Aoyagi, K., Wang, H., Sudo, H., & Chiba, A. (2019). Simple method to construct process maps for additive manufacturing using a support vector machine. Additive Manufacturing, 27, 353–362.CrossRef
Zurück zum Zitat Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.CrossRef Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.CrossRef
Zurück zum Zitat Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Zurück zum Zitat Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC Press. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC Press.
Zurück zum Zitat Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.CrossRef Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.CrossRef
Zurück zum Zitat Desai, P. S., & Higgs, C. F. (2019). Spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning. Metals, 9(11), 1176.CrossRef Desai, P. S., & Higgs, C. F. (2019). Spreading process maps for powder-bed additive manufacturing derived from physics model-based machine learning. Metals, 9(11), 1176.CrossRef
Zurück zum Zitat DeVor, R., Kapoor, S., Cao, J., & Ehmann, K. (2012). Transforming the landscape of manufacturing: distributed manufacturing based on desktop manufacturing (DM) 2. Journal of manufacturing science and engineering, 134(4), 041004.CrossRef DeVor, R., Kapoor, S., Cao, J., & Ehmann, K. (2012). Transforming the landscape of manufacturing: distributed manufacturing based on desktop manufacturing (DM) 2. Journal of manufacturing science and engineering, 134(4), 041004.CrossRef
Zurück zum Zitat Donegan, S. P., Schwalbach, E. J., & Groeber, M. A. (2020). Zoning additive manufacturing process histories using unsupervised machine learning. Materials Characterization, 161, 110123.CrossRef Donegan, S. P., Schwalbach, E. J., & Groeber, M. A. (2020). Zoning additive manufacturing process histories using unsupervised machine learning. Materials Characterization, 161, 110123.CrossRef
Zurück zum Zitat Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1996). Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155–161. Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J., & Vapnik, V. (1996). Support vector regression machines. Advances in Neural Information Processing Systems, 9, 155–161.
Zurück zum Zitat Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016a). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials Design, 95, 431–445.CrossRef Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016a). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials Design, 95, 431–445.CrossRef
Zurück zum Zitat Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016b). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials & Design, 95, 431–445.CrossRef Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., & Clare, A. T. (2016b). Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Materials & Design, 95, 431–445.CrossRef
Zurück zum Zitat Fatemi, A., et al. (2019). Fatigue behaviour of additive manufactured materials: An overview of some recent experimental studies on Ti-6Al-4V considering various processing and loading direction effects. Fatigue & Fracture of Engineering Materials & Structures, 42(5), 991–1009.CrossRef Fatemi, A., et al. (2019). Fatigue behaviour of additive manufactured materials: An overview of some recent experimental studies on Ti-6Al-4V considering various processing and loading direction effects. Fatigue & Fracture of Engineering Materials & Structures, 42(5), 991–1009.CrossRef
Zurück zum Zitat Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573–1587.CrossRef Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573–1587.CrossRef
Zurück zum Zitat Freedman, D. A. (2009). Statistical models: theory and practice. Cambridge University Press.CrossRef Freedman, D. A. (2009). Statistical models: theory and practice. Cambridge University Press.CrossRef
Zurück zum Zitat Garg, A., Lam, J. S. L., & Savalani, M. M. (2015). A new computational intelligence approach in formulation of functional relationship of open porosity of the additive manufacturing process. The International Journal of Advanced Manufacturing Technology, 80(1), 555–565.CrossRef Garg, A., Lam, J. S. L., & Savalani, M. M. (2015). A new computational intelligence approach in formulation of functional relationship of open porosity of the additive manufacturing process. The International Journal of Advanced Manufacturing Technology, 80(1), 555–565.CrossRef
Zurück zum Zitat Garland, A. P., White, B. C., Jared, B. H., Heiden, M., Donahue, E., & Boyce, B. L. (2020). Deep convolutional neural networks as a rapid screening tool for complex additively manufactured structures. Additive Manufacturing, 35, 101217.CrossRef Garland, A. P., White, B. C., Jared, B. H., Heiden, M., Donahue, E., & Boyce, B. L. (2020). Deep convolutional neural networks as a rapid screening tool for complex additively manufactured structures. Additive Manufacturing, 35, 101217.CrossRef
Zurück zum Zitat Ghobadian, A., Talavera, I., Bhattacharya, A., Kumar, V., Garza-Reyes, J. A., & O’regan, N. (2020). Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability. International Journal of Production Economics, 219, 457–468.CrossRef Ghobadian, A., Talavera, I., Bhattacharya, A., Kumar, V., Garza-Reyes, J. A., & O’regan, N. (2020). Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability. International Journal of Production Economics, 219, 457–468.CrossRef
Zurück zum Zitat Gockel, J., Sheridan, L., Koerper, B., & Whip, B. (2019). The influence of additive manufacturing processing parameters on surface roughness and fatigue life. International Journal of Fatigue, 124, 380–388.CrossRef Gockel, J., Sheridan, L., Koerper, B., & Whip, B. (2019). The influence of additive manufacturing processing parameters on surface roughness and fatigue life. International Journal of Fatigue, 124, 380–388.CrossRef
Zurück zum Zitat Goh, G. D., Sing, L. S., & Yeong, Y. Y. (2021). A review on machine learning in 3D printing: Applications, potential, and challenges. Artificial Intelligence Review, 54(1), 63–94.CrossRef Goh, G. D., Sing, L. S., & Yeong, Y. Y. (2021). A review on machine learning in 3D printing: Applications, potential, and challenges. Artificial Intelligence Review, 54(1), 63–94.CrossRef
Zurück zum Zitat Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
Zurück zum Zitat Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI Magazine, 40(2), 44–58.CrossRef Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI) program. AI Magazine, 40(2), 44–58.CrossRef
Zurück zum Zitat Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243.CrossRef Guo, N., & Leu, M. C. (2013). Additive manufacturing: Technology, applications and research needs. Frontiers of Mechanical Engineering, 8(3), 215–243.CrossRef
Zurück zum Zitat Guo, Y., Lu, W. F., & Fuh, J. Y. H. (2020). Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process. Journal of Intelligent Manufacturing, 32(2), 347–359.CrossRef Guo, Y., Lu, W. F., & Fuh, J. Y. H. (2020). Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process. Journal of Intelligent Manufacturing, 32(2), 347–359.CrossRef
Zurück zum Zitat Herriott, C., & Spear, A. D. (2020). Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods. Computational Materials Science, 175, 109599.CrossRef Herriott, C., & Spear, A. D. (2020). Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods. Computational Materials Science, 175, 109599.CrossRef
Zurück zum Zitat Hertlein, N., Deshpande, S., Venugopal, V., Kumar, M., & Anand, S. (2020). Prediction of selective laser melting part quality using hybrid Bayesian network. Additive Manufacturing, 32, 101089.CrossRef Hertlein, N., Deshpande, S., Venugopal, V., Kumar, M., & Anand, S. (2020). Prediction of selective laser melting part quality using hybrid Bayesian network. Additive Manufacturing, 32, 101089.CrossRef
Zurück zum Zitat Ho, T. K., (1995) "Random decision forests," In: Proceedings of 3rd international conference on document analysis and recognition, 1: 278–282: IEEE. Ho, T. K., (1995) "Random decision forests," In: Proceedings of 3rd international conference on document analysis and recognition, 1: 278–282: IEEE.
Zurück zum Zitat Hong, R., et al. (2020). Artificial neural network-based geometry compensation to improve the printing accuracy of selective laser melting fabricated sub-millimetre overhang trusses. Additive Manufacturing, 37, 101594.CrossRef Hong, R., et al. (2020). Artificial neural network-based geometry compensation to improve the printing accuracy of selective laser melting fabricated sub-millimetre overhang trusses. Additive Manufacturing, 37, 101594.CrossRef
Zurück zum Zitat Kamath, C. (2016). Data mining and statistical inference in selective laser melting. The International Journal of Advanced Manufacturing Technology, 86(5), 1659–1677.CrossRef Kamath, C. (2016). Data mining and statistical inference in selective laser melting. The International Journal of Advanced Manufacturing Technology, 86(5), 1659–1677.CrossRef
Zurück zum Zitat Kamath, C., & Fan, Y. J. (2018). Regression with small data sets: A case study using code surrogates in additive manufacturing. Knowledge and Information Systems, 57(2), 475–493.CrossRef Kamath, C., & Fan, Y. J. (2018). Regression with small data sets: A case study using code surrogates in additive manufacturing. Knowledge and Information Systems, 57(2), 475–493.CrossRef
Zurück zum Zitat Kappes, B., Moorthy, S., Drake, D., Geerlings, H., and Stebner, A., (2018) "Machine learning to optimize additive manufacturing parameters for laser powder bed fusion of Inconel 718." In: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, pp. 595–610: Springer. Kappes, B., Moorthy, S., Drake, D., Geerlings, H., and Stebner, A., (2018) "Machine learning to optimize additive manufacturing parameters for laser powder bed fusion of Inconel 718." In: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, pp. 595–610: Springer.
Zurück zum Zitat King, W. E., et al. (2015). Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews, 2(4), 041304.CrossRef King, W. E., et al. (2015). Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews, 2(4), 041304.CrossRef
Zurück zum Zitat Kusano, M., et al. (2020). Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification. Materials Science and Engineering: A, 787, 139549.CrossRef Kusano, M., et al. (2020). Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification. Materials Science and Engineering: A, 787, 139549.CrossRef
Zurück zum Zitat Kwon, O., et al. (2020). A deep neural network for classification of melt-pool images in metal additive manufacturing. Journal of Intelligent Manufacturing, 31(2), 375–386.CrossRef Kwon, O., et al. (2020). A deep neural network for classification of melt-pool images in metal additive manufacturing. Journal of Intelligent Manufacturing, 31(2), 375–386.CrossRef
Zurück zum Zitat Lee, J., Davari, H., Singh, J., & Pandhare, V. (2018). Industrial artificial intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20–23.CrossRef Lee, J., Davari, H., Singh, J., & Pandhare, V. (2018). Industrial artificial intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20–23.CrossRef
Zurück zum Zitat Lee, S., Peng, J., Shin, D., & Choi, Y. S. (2019). Data analytics approach for melt-pool geometries in metal additive manufacturing. Science and Technology of Advanced Materials, 20(1), 972–978.CrossRef Lee, S., Peng, J., Shin, D., & Choi, Y. S. (2019). Data analytics approach for melt-pool geometries in metal additive manufacturing. Science and Technology of Advanced Materials, 20(1), 972–978.CrossRef
Zurück zum Zitat Li, B., Hou, B., Yu, W., Lu, X., & Yang, C. (2017). Applications of artificial intelligence in intelligent manufacturing: A review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86–96.CrossRef Li, B., Hou, B., Yu, W., Lu, X., & Yang, C. (2017). Applications of artificial intelligence in intelligent manufacturing: A review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86–96.CrossRef
Zurück zum Zitat Li, J., Cao, L., Hu, J., Sheng, M., Zhou, Q., & Jin, P. (2020). A prediction approach of SLM based on the ensemble of metamodels considering material efficiency, energy consumption, and tensile strength. Journal of Intelligent Manufacturing, 23, 1–16. Li, J., Cao, L., Hu, J., Sheng, M., Zhou, Q., & Jin, P. (2020). A prediction approach of SLM based on the ensemble of metamodels considering material efficiency, energy consumption, and tensile strength. Journal of Intelligent Manufacturing, 23, 1–16.
Zurück zum Zitat Liu, J. (2017) "Heterogeneous sensor data based online quality assurance for advanced manufacturing using spatiotemporal modeling," Ph.D. Dissertation, Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Liu, J. (2017) "Heterogeneous sensor data based online quality assurance for advanced manufacturing using spatiotemporal modeling," Ph.D. Dissertation, Industrial and Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
Zurück zum Zitat Liu, J., Liu, C., Bai, Y., Rao, P., Williams, C. B., & Kong, Z. (2019). Layer-wise spatial modeling of porosity in additive manufacturing. IISE Transactions, 51(2), 109–123.CrossRef Liu, J., Liu, C., Bai, Y., Rao, P., Williams, C. B., & Kong, Z. (2019). Layer-wise spatial modeling of porosity in additive manufacturing. IISE Transactions, 51(2), 109–123.CrossRef
Zurück zum Zitat Liu, S., Stebner, A. P., Kappes, B. B., & Zhang, X. (2021). Machine learning for knowledge transfer across multiple metals additive manufacturing printers. Additive Manufacturing, 39, 101877.CrossRef Liu, S., Stebner, A. P., Kappes, B. B., & Zhang, X. (2021). Machine learning for knowledge transfer across multiple metals additive manufacturing printers. Additive Manufacturing, 39, 101877.CrossRef
Zurück zum Zitat Markl, M., & Körner, C. (2016). Multiscale modeling of powder bed-based additive manufacturing. Annual Review of Materials Research, 46(1), 93–123.CrossRef Markl, M., & Körner, C. (2016). Multiscale modeling of powder bed-based additive manufacturing. Annual Review of Materials Research, 46(1), 93–123.CrossRef
Zurück zum Zitat Marmarelis, M. G., & Ghanem, R. G. (2020). Data-driven stochastic optimization on manifolds for additive manufacturing. Computational Materials Science, 181, 109750.CrossRef Marmarelis, M. G., & Ghanem, R. G. (2020). Data-driven stochastic optimization on manifolds for additive manufacturing. Computational Materials Science, 181, 109750.CrossRef
Zurück zum Zitat Masoomi, M., Pegues, J. W., Thompson, S. M., & Shamsaei, N. (2018). A numerical and experimental investigation of convective heat transfer during laser-powder bed fusion. Additive Manufacturing, 22, 729–745.CrossRef Masoomi, M., Pegues, J. W., Thompson, S. M., & Shamsaei, N. (2018). A numerical and experimental investigation of convective heat transfer during laser-powder bed fusion. Additive Manufacturing, 22, 729–745.CrossRef
Zurück zum Zitat Meng, L., McWilliams, B., Jarosinski, W., Park, H.-Y., Jung, Y.-G., Lee, J., & Zhang, J. (2020). Machine learning in additive manufacturing: A review. JOM Journal of the Minerals Metals and Materials Society, 72(6), 2363–2377.CrossRef Meng, L., McWilliams, B., Jarosinski, W., Park, H.-Y., Jung, Y.-G., Lee, J., & Zhang, J. (2020). Machine learning in additive manufacturing: A review. JOM Journal of the Minerals Metals and Materials Society, 72(6), 2363–2377.CrossRef
Zurück zum Zitat Meng, L., & Zhang, J. (2020). Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model. JOM Journal of the Minerals Metals and Materials Society, 72(1), 420–428.CrossRef Meng, L., & Zhang, J. (2020). Process design of laser powder bed fusion of stainless steel using a Gaussian process-based machine learning model. JOM Journal of the Minerals Metals and Materials Society, 72(1), 420–428.CrossRef
Zurück zum Zitat Miyazaki, S., Kusano, M., Bulgarevich, D. S., Kishimoto, S., Yumoto, A., & Watanabe, M. (2019). Image segmentation and analysis for microstructure and property evaluations on Ti–6Al–4V fabricated by selective laser melting. Materials Transactions, 60(4), 561–568.CrossRef Miyazaki, S., Kusano, M., Bulgarevich, D. S., Kishimoto, S., Yumoto, A., & Watanabe, M. (2019). Image segmentation and analysis for microstructure and property evaluations on Ti–6Al–4V fabricated by selective laser melting. Materials Transactions, 60(4), 561–568.CrossRef
Zurück zum Zitat Molaei, R., Fatemi, A., Sanaei, N., Pegues, J., Shamsaei, N., Shao, S., Li, P., Warner, D. H., & Phan, N. (2020). Fatigue of additive manufactured Ti-6Al-4V, Part II: The relationship between microstructure, material cyclic properties, and component performance. International Journal of Fatigue, 132, 105363.CrossRef Molaei, R., Fatemi, A., Sanaei, N., Pegues, J., Shamsaei, N., Shao, S., Li, P., Warner, D. H., & Phan, N. (2020). Fatigue of additive manufactured Ti-6Al-4V, Part II: The relationship between microstructure, material cyclic properties, and component performance. International Journal of Fatigue, 132, 105363.CrossRef
Zurück zum Zitat Molnar, C. (2020). Interpretable machine learning : A guide for making black box models explainable (2nd ed.). Independently Published. Molnar, C. (2020). Interpretable machine learning : A guide for making black box models explainable (2nd ed.). Independently Published.
Zurück zum Zitat Mondal, S., Gwynn, D., Ray, A., & Basak, A. (2020). Investigation of melt pool geometry control in additive manufacturing using hybrid modeling. Metals, 10(5), 683.CrossRef Mondal, S., Gwynn, D., Ray, A., & Basak, A. (2020). Investigation of melt pool geometry control in additive manufacturing using hybrid modeling. Metals, 10(5), 683.CrossRef
Zurück zum Zitat Mycroft, W., et al. (2020). A data-driven approach for predicting printability in metal additive manufacturing processes. Journal of Intelligent Manufacturing, 31(7), 1769–1781.CrossRef Mycroft, W., et al. (2020). A data-driven approach for predicting printability in metal additive manufacturing processes. Journal of Intelligent Manufacturing, 31(7), 1769–1781.CrossRef
Zurück zum Zitat Olleak, A., & Xi, Z. (2020). Calibration and validation framework for selective laser melting process based on multi-fidelity models and limited experiment data. Journal of Mechanical Design, 142(8), 081701.CrossRef Olleak, A., & Xi, Z. (2020). Calibration and validation framework for selective laser melting process based on multi-fidelity models and limited experiment data. Journal of Mechanical Design, 142(8), 081701.CrossRef
Zurück zum Zitat Park, H. S., Nguyen, D. S., Le-Hong, T., & Van Tran, X. (2022). Machine learning-based optimization of process parameters in selective laser melting for biomedical applications. Journal of Intelligent Manufacturing, 33(6), 1843–1858.CrossRef Park, H. S., Nguyen, D. S., Le-Hong, T., & Van Tran, X. (2022). Machine learning-based optimization of process parameters in selective laser melting for biomedical applications. Journal of Intelligent Manufacturing, 33(6), 1843–1858.CrossRef
Zurück zum Zitat Paulson, N. H., Gould, B., Wolff, S. J., Stan, M., & Greco, A. C. (2020). Correlations between thermal history and keyhole porosity in laser powder bed fusion. Additive Manufacturing, 34, 101213.CrossRef Paulson, N. H., Gould, B., Wolff, S. J., Stan, M., & Greco, A. C. (2020). Correlations between thermal history and keyhole porosity in laser powder bed fusion. Additive Manufacturing, 34, 101213.CrossRef
Zurück zum Zitat Pegues, J. W., et al. (2020). Fatigue of additive manufactured Ti-6Al-4V, part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects. International Journal of Fatigue, 132, 105358.CrossRef Pegues, J. W., et al. (2020). Fatigue of additive manufactured Ti-6Al-4V, part I: The effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects. International Journal of Fatigue, 132, 105358.CrossRef
Zurück zum Zitat Ponticelli, G. S., Giannini, O., Guarino, S., & Horn, M. (2020). An optimal fuzzy decision-making approach for laser powder bed fusion of AlSi10Mg alloy. Journal of Manufacturing Processes, 58, 712–723.CrossRef Ponticelli, G. S., Giannini, O., Guarino, S., & Horn, M. (2020). An optimal fuzzy decision-making approach for laser powder bed fusion of AlSi10Mg alloy. Journal of Manufacturing Processes, 58, 712–723.CrossRef
Zurück zum Zitat Popova, E., Rodgers, T. M., Gong, X., Cecen, A., Madison, J. D., & Kalidindi, S. R. (2017). Process-structure linkages using a data science approach: Application to simulated additive manufacturing data. Integrating Materials and Manufacturing Innovation, 6(1), 54–68.CrossRef Popova, E., Rodgers, T. M., Gong, X., Cecen, A., Madison, J. D., & Kalidindi, S. R. (2017). Process-structure linkages using a data science approach: Application to simulated additive manufacturing data. Integrating Materials and Manufacturing Innovation, 6(1), 54–68.CrossRef
Zurück zum Zitat Qi, X., Chen, G., Li, Y., Cheng, X., & Li, C. (2019). Applying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectives. Engineering, 5(4), 721–729.CrossRef Qi, X., Chen, G., Li, Y., Cheng, X., & Li, C. (2019). Applying neural-network-based machine learning to additive manufacturing: Current applications, challenges, and future perspectives. Engineering, 5(4), 721–729.CrossRef
Zurück zum Zitat Rao, P. K., Liu, J., Roberson, and Kong, Z., (2015b) "Sensor-based online process fault detection in additive manufacturing." In: International Manufacturing Science and Engineering Conference, 56833, V002T04A010: American Society of Mechanical Engineers. Rao, P. K., Liu, J., Roberson, and Kong, Z., (2015b) "Sensor-based online process fault detection in additive manufacturing." In: International Manufacturing Science and Engineering Conference, 56833, V002T04A010: American Society of Mechanical Engineers.
Zurück zum Zitat Rao, P. K., Liu, J. P., Roberson, D., Kong, Z. J., & Williams, C. (2015). Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. Journal of Manufacturing Science and Engineering, 137(6), 061007.CrossRef Rao, P. K., Liu, J. P., Roberson, D., Kong, Z. J., & Williams, C. (2015). Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. Journal of Manufacturing Science and Engineering, 137(6), 061007.CrossRef
Zurück zum Zitat Razvi, S. S., Feng, S., Narayanan, A., Lee, Y.-T. T., and Witherell, P., (2019) "A review of machine learning applications in additive manufacturing." In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 59179: V001T02A040: American Society of Mechanical Engineers. Razvi, S. S., Feng, S., Narayanan, A., Lee, Y.-T. T., and Witherell, P., (2019) "A review of machine learning applications in additive manufacturing." In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 59179: V001T02A040: American Society of Mechanical Engineers.
Zurück zum Zitat Read, N., Wang, W., Essa, K., & Attallah, M. M. (2015). Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design, 1980–2015(65), 417–424.CrossRef Read, N., Wang, W., Essa, K., & Attallah, M. M. (2015). Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design, 1980–2015(65), 417–424.CrossRef
Zurück zum Zitat RongJi, W., Xinhua, L., Qingding, W., & Lingling, W. (2009). Optimizing process parameters for selective laser sintering based on neural network and genetic algorithm. The International Journal of Advanced Manufacturing Technology, 42(11), 1035–1042.CrossRef RongJi, W., Xinhua, L., Qingding, W., & Lingling, W. (2009). Optimizing process parameters for selective laser sintering based on neural network and genetic algorithm. The International Journal of Advanced Manufacturing Technology, 42(11), 1035–1042.CrossRef
Zurück zum Zitat Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.CrossRef Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.CrossRef
Zurück zum Zitat Russell, S., & Norvig, P. (2003). “Artificial intelligence: A modern approach” (2nd ed.). Prentice Hall. Russell, S., & Norvig, P. (2003). “Artificial intelligence: A modern approach” (2nd ed.). Prentice Hall.
Zurück zum Zitat Russell, R., Wells, D., Waller, J., Poorganji, B., Ott, E., Nakagawa, T., Sandoval, H., Shamsaei, N., & Seifi, M. (2019). “Qualification and certification of metal additive manufactured hardware for aerospace applications.” Additive manufacturing for the aerospace industry (pp. 33–66). Elsevier. Russell, R., Wells, D., Waller, J., Poorganji, B., Ott, E., Nakagawa, T., Sandoval, H., Shamsaei, N., & Seifi, M. (2019). “Qualification and certification of metal additive manufactured hardware for aerospace applications.” Additive manufacturing for the aerospace industry (pp. 33–66). Elsevier.
Zurück zum Zitat Sadowski, M., Ladani, L., Brindley, W., & Romano, J. (2016). Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process. Additive Manufacturing, 11, 60–70.CrossRef Sadowski, M., Ladani, L., Brindley, W., & Romano, J. (2016). Optimizing quality of additively manufactured Inconel 718 using powder bed laser melting process. Additive Manufacturing, 11, 60–70.CrossRef
Zurück zum Zitat Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R., & Babu, S. S. (2016). The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 61(5), 315–360.CrossRef Sames, W. J., List, F. A., Pannala, S., Dehoff, R. R., & Babu, S. S. (2016). The metallurgy and processing science of metal additive manufacturing. International Materials Reviews, 61(5), 315–360.CrossRef
Zurück zum Zitat Sanchez, S., Rengasamy, D., Hyde, C. J., Figueredo, G. P., & Rothwell, B. (2021). Machine learning to determine the main factors affecting creep rates in laser powder bed fusion. Journal of Intelligent Manufacturing, 32(8), 2353–2373.CrossRef Sanchez, S., Rengasamy, D., Hyde, C. J., Figueredo, G. P., & Rothwell, B. (2021). Machine learning to determine the main factors affecting creep rates in laser powder bed fusion. Journal of Intelligent Manufacturing, 32(8), 2353–2373.CrossRef
Zurück zum Zitat Scime, L., & Beuth, J. (2019). Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 29, 100830.CrossRef Scime, L., & Beuth, J. (2019). Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process. Additive Manufacturing, 29, 100830.CrossRef
Zurück zum Zitat Shah, R. K., & Dey, P. P. (2019). Process parameter optimization of dmls process to produce AlSi10Mg components. Journal of Physics: Conference Series, 1240(1), 012011. Shah, R. K., & Dey, P. P. (2019). Process parameter optimization of dmls process to produce AlSi10Mg components. Journal of Physics: Conference Series, 1240(1), 012011.
Zurück zum Zitat Shen, X., Yao J., Wang, Y., and Yang, J., (2004) "Density prediction of selective laser sintering parts based on artificial neural network." In: International Symposium on Neural Networks (ISNN 2004): Springer, pp. 832–840 Shen, X., Yao J., Wang, Y., and Yang, J., (2004) "Density prediction of selective laser sintering parts based on artificial neural network." In: International Symposium on Neural Networks (ISNN 2004): Springer, pp. 832–840
Zurück zum Zitat Shrestha, R., Shamsaei, N., Seifi, M., & Phan, N. (2019). An investigation into specimen property to part performance relationships for laser beam powder bed fusion additive manufacturing. Additive Manufacturing, 29, 100807.CrossRef Shrestha, R., Shamsaei, N., Seifi, M., & Phan, N. (2019). An investigation into specimen property to part performance relationships for laser beam powder bed fusion additive manufacturing. Additive Manufacturing, 29, 100807.CrossRef
Zurück zum Zitat Silbernagel, C., Aremu, A., & Ashcroft, I. (2019). Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing. Rapid Prototyping Journal, 26(4), 625–637.CrossRef Silbernagel, C., Aremu, A., & Ashcroft, I. (2019). Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturing. Rapid Prototyping Journal, 26(4), 625–637.CrossRef
Zurück zum Zitat Smith, J., et al. (2016). Linking process, structure, property, and performance for metal-based additive manufacturing: Computational approaches with experimental support. Computational Mechanics, 57(4), 583–610.CrossRef Smith, J., et al. (2016). Linking process, structure, property, and performance for metal-based additive manufacturing: Computational approaches with experimental support. Computational Mechanics, 57(4), 583–610.CrossRef
Zurück zum Zitat Snell, R., et al. (2020). Methods for rapid pore classification in metal additive manufacturing. JOM Journal of the Minerals Metals and Materials Society, 72(1), 101–109.CrossRef Snell, R., et al. (2020). Methods for rapid pore classification in metal additive manufacturing. JOM Journal of the Minerals Metals and Materials Society, 72(1), 101–109.CrossRef
Zurück zum Zitat Soltani-Tehrani, A., Pegues, J., & Shamsaei, N. (2020). Fatigue behavior of additively manufactured 17–4 PH stainless steel: The effects of part location and powder re-use. Additive Manufacturing, 36, 101398.CrossRef Soltani-Tehrani, A., Pegues, J., & Shamsaei, N. (2020). Fatigue behavior of additively manufactured 17–4 PH stainless steel: The effects of part location and powder re-use. Additive Manufacturing, 36, 101398.CrossRef
Zurück zum Zitat Srinivasan, S., Swick, B., & Groeber, M. A. (2020). Laser powder bed fusion parameter selection via machine-learning-augmented process modeling. JOM, 72, 4393–4403.CrossRef Srinivasan, S., Swick, B., & Groeber, M. A. (2020). Laser powder bed fusion parameter selection via machine-learning-augmented process modeling. JOM, 72, 4393–4403.CrossRef
Zurück zum Zitat Sun, J., Yang, Y., & Wang, D. (2013). Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Optics & Laser Technology, 49, 118–124.CrossRef Sun, J., Yang, Y., & Wang, D. (2013). Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Optics & Laser Technology, 49, 118–124.CrossRef
Zurück zum Zitat Tapia, G., Elwany, A. H., & Sang, H. (2016). Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Additive Manufacturing, 12, 282–290.CrossRef Tapia, G., Elwany, A. H., & Sang, H. (2016). Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models. Additive Manufacturing, 12, 282–290.CrossRef
Zurück zum Zitat Tapia, G., Khairallah, S., Matthews, M., King, W. E., & Elwany, A. (2018). Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. The International Journal of Advanced Manufacturing Technology, 94(9), 3591–3603.CrossRef Tapia, G., Khairallah, S., Matthews, M., King, W. E., & Elwany, A. (2018). Gaussian process-based surrogate modeling framework for process planning in laser powder-bed fusion additive manufacturing of 316L stainless steel. The International Journal of Advanced Manufacturing Technology, 94(9), 3591–3603.CrossRef
Zurück zum Zitat Tegmark, M. (2017). Life 3.0: Being human in the age of artificial intelligence (1st ed.). Knopf Doubleday Publishing Group. Tegmark, M. (2017). Life 3.0: Being human in the age of artificial intelligence (1st ed.). Knopf Doubleday Publishing Group.
Zurück zum Zitat Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (methodological), 58(1), 267–288. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (methodological), 58(1), 267–288.
Zurück zum Zitat Vulimiri, P., To, A., Zhang, X., Brice, C., Kappes, B., & Stebner, A. (2020). Invited review: Machine learning for materials developments in metals additive manufacturing. Additive Manufacturing, 36, 101641.CrossRef Vulimiri, P., To, A., Zhang, X., Brice, C., Kappes, B., & Stebner, A. (2020). Invited review: Machine learning for materials developments in metals additive manufacturing. Additive Manufacturing, 36, 101641.CrossRef
Zurück zum Zitat Wan, H. Y., Chen, G. F., Li, C. P., Qi, X. B., & Zhang, G. P. (2019). Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens. Journal of Materials Science & Technology, 35(6), 1137–1146.CrossRef Wan, H. Y., Chen, G. F., Li, C. P., Qi, X. B., & Zhang, G. P. (2019). Data-driven evaluation of fatigue performance of additive manufactured parts using miniature specimens. Journal of Materials Science & Technology, 35(6), 1137–1146.CrossRef
Zurück zum Zitat Wang, C., Tan, X. P., Tor, S. B., & Lim, C. S. (2020). Machine learning in additive manufacturing: State-of-the-art and perspectives. Additive Manufacturing, 36, 101538.CrossRef Wang, C., Tan, X. P., Tor, S. B., & Lim, C. S. (2020). Machine learning in additive manufacturing: State-of-the-art and perspectives. Additive Manufacturing, 36, 101538.CrossRef
Zurück zum Zitat Wang, R., Li, J., Wang, F., Li, X., & Wu, Q. (2009). ANN model for the prediction of density in selective laser sintering. International Journal of Manufacturing Research, 4(3), 362–373.CrossRef Wang, R., Li, J., Wang, F., Li, X., & Wu, Q. (2009). ANN model for the prediction of density in selective laser sintering. International Journal of Manufacturing Research, 4(3), 362–373.CrossRef
Zurück zum Zitat Yadollahi, A., & Shamsaei, N. (2017). Additive manufacturing of fatigue resistant materials: Challenges and opportunities. International Journal of Fatigue, 98, 14–31.CrossRef Yadollahi, A., & Shamsaei, N. (2017). Additive manufacturing of fatigue resistant materials: Challenges and opportunities. International Journal of Fatigue, 98, 14–31.CrossRef
Zurück zum Zitat Yadollahi, A., Shamsaei, N., Thompson, S. M., Elwany, A., & Bian, L. (2017). Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel. International Journal of Fatigue, 94, 218–235.CrossRef Yadollahi, A., Shamsaei, N., Thompson, S. M., Elwany, A., & Bian, L. (2017). Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17–4 PH stainless steel. International Journal of Fatigue, 94, 218–235.CrossRef
Zurück zum Zitat Yan, F., Chan, Y., Saboo, A., Shah, J., Olson, G. B., & Chen, W. (2018). Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys. Computer Modeling in Engineering & Sciences, 117(3), 343–366.CrossRef Yan, F., Chan, Y., Saboo, A., Shah, J., Olson, G. B., & Chen, W. (2018). Data-driven prediction of mechanical properties in support of rapid certification of additively manufactured alloys. Computer Modeling in Engineering & Sciences, 117(3), 343–366.CrossRef
Zurück zum Zitat Yang, Z., Eddy, D., Krishnamurty, S., Grosse, I., and Lu, Y., (2018b) "A Super-Metamodeling Framework to Optimize System Predictability." In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 51722, V01AT02A009: American Society of Mechanical Engineers. Yang, Z., Eddy, D., Krishnamurty, S., Grosse, I., and Lu, Y., (2018b) "A Super-Metamodeling Framework to Optimize System Predictability." In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 51722, V01AT02A009: American Society of Mechanical Engineers.
Zurück zum Zitat Yang, H. J., Hwang, P. J., & Lee, S. H. (2002). A study on shrinkage compensation of the SLS process by using the Taguchi method. International Journal of Machine Tools and Manufacture, 42(11), 1203–1212.CrossRef Yang, H. J., Hwang, P. J., & Lee, S. H. (2002). A study on shrinkage compensation of the SLS process by using the Taguchi method. International Journal of Machine Tools and Manufacture, 42(11), 1203–1212.CrossRef
Zurück zum Zitat Yang, Z., Eddy, D., Krishnamurty, S., Grosse, I., Denno, P., Witherell, PW., Lopez, F., (2018a). Dynamic metamodeling for predictive analytics in advanced manufacturing. Smart and Sustainable Manufacturing Systems, 2(1), 18–39.CrossRef Yang, Z., Eddy, D., Krishnamurty, S., Grosse, I., Denno, P., Witherell, PW., Lopez, F., (2018a). Dynamic metamodeling for predictive analytics in advanced manufacturing. Smart and Sustainable Manufacturing Systems, 2(1), 18–39.CrossRef
Zurück zum Zitat Zhan, Z., & Li, H. (2021). Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. International Journal of Fatigue, 142, 105941.CrossRef Zhan, Z., & Li, H. (2021). Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. International Journal of Fatigue, 142, 105941.CrossRef
Zurück zum Zitat Zhang, C., & Ma, Y. (2012). Ensemble machine learning: methods and applications. Springer.CrossRef Zhang, C., & Ma, Y. (2012). Ensemble machine learning: methods and applications. Springer.CrossRef
Zurück zum Zitat Zhang, W., Mehta, A., Desai, P. S., and Higgs, C., (2017) "Machine learning enabled powder spreading process map for metal additive manufacturing (AM)." In: Int. Solid Free Form Fabr. Symp. Austin, TX, pp. 1235–1249. Zhang, W., Mehta, A., Desai, P. S., and Higgs, C., (2017) "Machine learning enabled powder spreading process map for metal additive manufacturing (AM)." In: Int. Solid Free Form Fabr. Symp. Austin, TX, pp. 1235–1249.
Zurück zum Zitat Zhang, M., et al. (2019). High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. International Journal of Fatigue, 128, 105194.CrossRef Zhang, M., et al. (2019). High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach. International Journal of Fatigue, 128, 105194.CrossRef
Metadaten
Titel
A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing
verfasst von
Jia Liu
Jiafeng Ye
Daniel Silva Izquierdo
Aleksandr Vinel
Nima Shamsaei
Shuai Shao
Publikationsdatum
15.09.2022
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 8/2023
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-022-02012-0

Weitere Artikel der Ausgabe 8/2023

Journal of Intelligent Manufacturing 8/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.