Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 6/2018

02.06.2018 | Original Paper

Multi-objective versus single-objective optimization of batch bioethanol production based on a time-dependent fermentation model

verfasst von: Kwabena Darkwah, Barbara L. Knutson, Jeffrey R. Seay

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Traditional process simulators, such as Aspen Plus, are inadequate for optimizing multiple-objective systems in fermentation-based processes. This work uses a novel integrated platform of the robust genetic algorithm optimization in MATLAB linked with an Aspen Plus unsteady-state batch fermentation simulation to optimize the batch ethanolic fermentation process with respect to initial substrate concentration, fermentation time, and in situ product removal. A time-dependent fermentation model that utilizes both glucose and xylose, the major sugars present in lignocellulosic hydrolysate, with Monod cell growth kinetics, substrate and product inhibitions, is used as a model system. The optimized design variables from the multi-objective optimization (MOO) and single-objective optimization (SOO) suggest the typical concentrations of sugars from lignocellulosic hydrolysate must be concentrated to optimize the performance of the batch fermentation process. Furthermore, time-dependent information from an unsteady-state simulation was used to design an integrated batch fermentation with in situ product recovery, allowing higher initial sugars concentrations to be used in the fermentation process (about 50%, for the best optimal solution in the MOO). This resulted in 15% ethanol productivity, 143% total ethanol produced, and 67% fraction of sugar converted improvements relative to the batch fermentation without product recovery. Unlike the single optimal solution from the SOO, MOO presents many equally optimal solutions that can be used as a decision-support tool to guide the choice of design variables for optimum process performance. This study creates a platform that can be used to optimize integrated biorefinery and refinery processes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abdehagh N, Tezel FH, Thibault J (2014) Separation techniques in butanol production: challenges and developments. Biomass Bioenergy 60:222–246CrossRef Abdehagh N, Tezel FH, Thibault J (2014) Separation techniques in butanol production: challenges and developments. Biomass Bioenergy 60:222–246CrossRef
Zurück zum Zitat Abels C, Thimm K, Wulfhorst H, Spiess AC, Wessling M (2013) Membrane-based recovery of glucose from enzymatic hydrolysis of ionic liquid pretreated cellulose. Bioresour Technol 149:58–64CrossRef Abels C, Thimm K, Wulfhorst H, Spiess AC, Wessling M (2013) Membrane-based recovery of glucose from enzymatic hydrolysis of ionic liquid pretreated cellulose. Bioresour Technol 149:58–64CrossRef
Zurück zum Zitat Azapagic A (2014) Sustainability considerations for integrated biorefineries. Trends Biotechnol 32:1–4CrossRef Azapagic A (2014) Sustainability considerations for integrated biorefineries. Trends Biotechnol 32:1–4CrossRef
Zurück zum Zitat Carlson EC (1996) Don’t gamble with physical properties for simulations. Chem Eng Prog 92:35–46 Carlson EC (1996) Don’t gamble with physical properties for simulations. Chem Eng Prog 92:35–46
Zurück zum Zitat del Castillo-Romo AÁ, Morales-Rodriguez R, Román-Martínez A (2018) Multiobjective optimization for the socio-eco-efficient conversion of lignocellulosic biomass to biofuels and bioproducts. Clean Technol Environ Policy 20:603–620CrossRef del Castillo-Romo AÁ, Morales-Rodriguez R, Román-Martínez A (2018) Multiobjective optimization for the socio-eco-efficient conversion of lignocellulosic biomass to biofuels and bioproducts. Clean Technol Environ Policy 20:603–620CrossRef
Zurück zum Zitat Dussan KJ, Silva D, Moraes E, Arruda PV, Felipe M (2014) Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chem Eng Trans 38:433–438 Dussan KJ, Silva D, Moraes E, Arruda PV, Felipe M (2014) Dilute-acid hydrolysis of cellulose to glucose from sugarcane bagasse. Chem Eng Trans 38:433–438
Zurück zum Zitat Ezeji TC, Qureshi N, Blaschek H (2013) Microbial production of a biofuel (acetone–butanol–ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal. Bioprocess Biosyst Eng 36:109–116CrossRef Ezeji TC, Qureshi N, Blaschek H (2013) Microbial production of a biofuel (acetone–butanol–ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal. Bioprocess Biosyst Eng 36:109–116CrossRef
Zurück zum Zitat Gabriel KJ, El-Halwagi MM (2013) Modeling and optimization of a bioethanol production facility. Clean Technol Environ Policy 15:931–944CrossRef Gabriel KJ, El-Halwagi MM (2013) Modeling and optimization of a bioethanol production facility. Clean Technol Environ Policy 15:931–944CrossRef
Zurück zum Zitat Geraili A, Sharma P, Romagnoli JA (2014) Technology analysis of integrated biorefineries through process simulation and hybrid optimization. Energy 73:145–159CrossRef Geraili A, Sharma P, Romagnoli JA (2014) Technology analysis of integrated biorefineries through process simulation and hybrid optimization. Energy 73:145–159CrossRef
Zurück zum Zitat Gudena K, Rangaiah GP, Lakshminarayanan S (2013) Multi-objective optimization in chemical engineering: developments and applications. Wiley, New York Gudena K, Rangaiah GP, Lakshminarayanan S (2013) Multi-objective optimization in chemical engineering: developments and applications. Wiley, New York
Zurück zum Zitat Hill D, Justice FC (2011) Understand thermodynamics to improve process simulations. Chem Eng Prog 107:20–25 Hill D, Justice FC (2011) Understand thermodynamics to improve process simulations. Chem Eng Prog 107:20–25
Zurück zum Zitat Kiss AA, Grievink J, Rito-Palomares M (2015) A systems engineering perspective on process integration in industrial biotechnology. J Chem Technol Biotechnol 90:349–355CrossRef Kiss AA, Grievink J, Rito-Palomares M (2015) A systems engineering perspective on process integration in industrial biotechnology. J Chem Technol Biotechnol 90:349–355CrossRef
Zurück zum Zitat Lee KJ, Rogers PL (1983) The fermentation kinetics of ethanol production by Zymomonas mobilis. Chem Eng J 27:B31–B38CrossRef Lee KJ, Rogers PL (1983) The fermentation kinetics of ethanol production by Zymomonas mobilis. Chem Eng J 27:B31–B38CrossRef
Zurück zum Zitat Leksawasdi N, Joachimsthal EL, Rogers PL (2001) Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. Biotechnol Lett 23:1087–1093CrossRef Leksawasdi N, Joachimsthal EL, Rogers PL (2001) Mathematical modelling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. Biotechnol Lett 23:1087–1093CrossRef
Zurück zum Zitat Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRef Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRef
Zurück zum Zitat Malmali M, Stickel JJ, Wickramasinghe SR (2014) Sugar concentration and detoxification of clarified biomass hydrolysate by nanofiltration. Sep Purif Technol 132:655–665CrossRef Malmali M, Stickel JJ, Wickramasinghe SR (2014) Sugar concentration and detoxification of clarified biomass hydrolysate by nanofiltration. Sep Purif Technol 132:655–665CrossRef
Zurück zum Zitat Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68CrossRef Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68CrossRef
Zurück zum Zitat Ponce GH, Mirandaa JC, Filhoa RM, de Andradeb RR, Wolfa MR (2015) Simulation, analysis and optimization of sugar concentration in an in situ gas stripping fermentation process for bioethanol production. Chem Eng Trans 43:319–324 Ponce GH, Mirandaa JC, Filhoa RM, de Andradeb RR, Wolfa MR (2015) Simulation, analysis and optimization of sugar concentration in an in situ gas stripping fermentation process for bioethanol production. Chem Eng Trans 43:319–324
Zurück zum Zitat Reeves CR (1995) A genetic algorithm for flowshop sequencing. Comput Oper Res 22:5–13CrossRef Reeves CR (1995) A genetic algorithm for flowshop sequencing. Comput Oper Res 22:5–13CrossRef
Zurück zum Zitat Sánchez-Ramírez E, Quiroz-Ramírez JJ, Segovia-Hernández JG, Hernández S, Ponce-Ortega JM (2016) Economic and environmental optimization of the biobutanol purification process. Clean Technol Environ Policy 18:395–411CrossRef Sánchez-Ramírez E, Quiroz-Ramírez JJ, Segovia-Hernández JG, Hernández S, Ponce-Ortega JM (2016) Economic and environmental optimization of the biobutanol purification process. Clean Technol Environ Policy 18:395–411CrossRef
Zurück zum Zitat Song Y, Wi SG, Kim HM, Bae H-J (2016) Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment. Bioresour Technol 214:30–36CrossRef Song Y, Wi SG, Kim HM, Bae H-J (2016) Cellulosic bioethanol production from Jerusalem artichoke (Helianthus tuberosus L.) using hydrogen peroxide-acetic acid (HPAC) pretreatment. Bioresour Technol 214:30–36CrossRef
Zurück zum Zitat Stephanopoulos G, Reklaitis GV (2011) Process systems engineering: from Solvay to modern bio-and nanotechnology: a history of development, successes and prospects for the future. Chem Eng Sci 66:4272–4306CrossRef Stephanopoulos G, Reklaitis GV (2011) Process systems engineering: from Solvay to modern bio-and nanotechnology: a history of development, successes and prospects for the future. Chem Eng Sci 66:4272–4306CrossRef
Zurück zum Zitat Thaibault J (2009) Net flow and rough sets: two methods for ranking the pareto domain. In: Rangaiah PG (ed) Advances in process systems engineering: multi-objective optimization techniques and applications in chemical engineering, 2nd edn. World Scientific Publishing Co., Singapore, pp 199–246 Thaibault J (2009) Net flow and rough sets: two methods for ranking the pareto domain. In: Rangaiah PG (ed) Advances in process systems engineering: multi-objective optimization techniques and applications in chemical engineering, 2nd edn. World Scientific Publishing Co., Singapore, pp 199–246
Zurück zum Zitat Thatipamala R, Rohani S, Hill G (1992) Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol Bioeng 40:289–297CrossRef Thatipamala R, Rohani S, Hill G (1992) Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol Bioeng 40:289–297CrossRef
Zurück zum Zitat Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2:553–588CrossRef Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2:553–588CrossRef
Zurück zum Zitat Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56CrossRef Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56CrossRef
Metadaten
Titel
Multi-objective versus single-objective optimization of batch bioethanol production based on a time-dependent fermentation model
verfasst von
Kwabena Darkwah
Barbara L. Knutson
Jeffrey R. Seay
Publikationsdatum
02.06.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 6/2018
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-018-1553-z

Weitere Artikel der Ausgabe 6/2018

Clean Technologies and Environmental Policy 6/2018 Zur Ausgabe