Skip to main content
Erschienen in: Journal of Materials Science 28/2020

06.07.2020 | Energy materials

Multi-step low-cost synthesis of ultrafine silicon porous structures for high-reversible lithium-ion battery anodes

verfasst von: Yifan Chen, Yongjun Yuan, Cong Xu, Liang Bao, Tao Yang, Ning Du, Yangfan Lin, Huaiwei Zhang

Erschienen in: Journal of Materials Science | Ausgabe 28/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We demonstrate multi-step synthesis of silicon porous structures with various particle sizes via low-cost annealing and pickling reactions from ball-milled Mg2Si or Si/Mg powder. Thereinto, the ultrafine Si porous structures (< 50 nm) have been prepared by the two-step alloying/de-alloying processes between Si and Mg, and the formation processes and reaction mechanism have been discussed as well. When used as an anode material for lithium-ion batteries, the porous Si anode with finer particle size shows better capacity retention and coulombic efficiency, confirming the particle size has a great impact on cycling performance. Moreover, the ultrafine porous Si anodes without any buffer medium demonstrate a reversible discharge capacity of ~ 800 mAhg−1 after 1000 long cycles at 1 Ag−1, which is extremely better than the commercial nano-Si particles and graphite anodes. It is believed that the good electrochemical performance could be attributed to the uniform porous structure and superfine particle size that can alleviate the volume change significantly. Hence, these low-cost and simple scalable methods have provided useful strategies for the industrialization of Si anode materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kwon TW, Choi J, Coskun A (2018) The emerging area of supramolecular polymeric binders in silicon anodes. Chem Soc Rev 47:2145–2164CrossRef Kwon TW, Choi J, Coskun A (2018) The emerging area of supramolecular polymeric binders in silicon anodes. Chem Soc Rev 47:2145–2164CrossRef
2.
Zurück zum Zitat Chae S, Choi SH, Kim N, Sung J, Cho J (2020) Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew Chem Int Ed 59:110–135CrossRef Chae S, Choi SH, Kim N, Sung J, Cho J (2020) Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew Chem Int Ed 59:110–135CrossRef
3.
Zurück zum Zitat Rahman MA, Song G, Bhatt A, Wong Y, Wen C (2016) Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv Funct Mater 26:647–678CrossRef Rahman MA, Song G, Bhatt A, Wong Y, Wen C (2016) Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv Funct Mater 26:647–678CrossRef
4.
Zurück zum Zitat Zuo X, Zhu J, Muller-Buschbaum P, Cheng Y (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143CrossRef Zuo X, Zhu J, Muller-Buschbaum P, Cheng Y (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143CrossRef
5.
Zurück zum Zitat Nzabahimana J, Liu Z, Guo S, Wang L, Hu X (2020) Top-Down synthesis of silicon/carbon composite anode materials for lithium-ion batteries: mechanical milling and etching. Chemsuschem 13:1–25CrossRef Nzabahimana J, Liu Z, Guo S, Wang L, Hu X (2020) Top-Down synthesis of silicon/carbon composite anode materials for lithium-ion batteries: mechanical milling and etching. Chemsuschem 13:1–25CrossRef
6.
Zurück zum Zitat Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
7.
Zurück zum Zitat Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206CrossRef Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12:194–206CrossRef
8.
Zurück zum Zitat Wang B, Ryu J, Choi S et al (2019) Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 13:2307–2315 Wang B, Ryu J, Choi S et al (2019) Ultrafast-charging silicon-based coral-like network anodes for lithium-ion batteries with high energy and power densities. ACS Nano 13:2307–2315
9.
Zurück zum Zitat Demirkan MT, Trahey L, Karabacak T (2015) Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries. J Power Sources 273:52–61CrossRef Demirkan MT, Trahey L, Karabacak T (2015) Cycling performance of density modulated multilayer silicon thin film anodes in Li-ion batteries. J Power Sources 273:52–61CrossRef
10.
Zurück zum Zitat Jia H, Zheng J, Song J et al (2018) A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 50:589–597CrossRef Jia H, Zheng J, Song J et al (2018) A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 50:589–597CrossRef
11.
Zurück zum Zitat Chen S, Shen L, Aken PAV, Maier J, Yu Y (2017) Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv Mater 29:1605650CrossRef Chen S, Shen L, Aken PAV, Maier J, Yu Y (2017) Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries. Adv Mater 29:1605650CrossRef
12.
Zurück zum Zitat Wang D, Zhou C, Cao B et al (2020) One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Materials 24:312–318CrossRef Wang D, Zhou C, Cao B et al (2020) One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries. Energy Storage Materials 24:312–318CrossRef
13.
Zurück zum Zitat Chen M, Li B, Liu X, Zhou L, Yao L, Zai J, Qian X, Yu X (2018) Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability. J Mater Chem A 6:3022–3027CrossRef Chen M, Li B, Liu X, Zhou L, Yao L, Zai J, Qian X, Yu X (2018) Boron-doped porous Si anode materials with high initial coulombic efficiency and long cycling stability. J Mater Chem A 6:3022–3027CrossRef
14.
Zurück zum Zitat Li J, Li G, Zhang J, Yin Y, Yue F, Xu Q, Guo Y (2019) Rational design of robust Si/C microspheres for high tap density anode materials. ACS Appl Mater Inter 11:4057–4064CrossRef Li J, Li G, Zhang J, Yin Y, Yue F, Xu Q, Guo Y (2019) Rational design of robust Si/C microspheres for high tap density anode materials. ACS Appl Mater Inter 11:4057–4064CrossRef
15.
Zurück zum Zitat Ma T, Xu H, Yu X, Li H, Zhang W, Cheng X, Zhu W, Qiu X (2019) Lithiation behavior of coaxial hollow nanocables of carbon-silicon composite. ACS Nano 13:2274–2280 Ma T, Xu H, Yu X, Li H, Zhang W, Cheng X, Zhu W, Qiu X (2019) Lithiation behavior of coaxial hollow nanocables of carbon-silicon composite. ACS Nano 13:2274–2280
16.
Zurück zum Zitat Han X, Zhang Z, You R, Zheng G, Li C, Chen S, Yang Y (2018) Capitalization of interfacial AlON interactions to achieve stable binder-free porous silicon/carbon anodes. J Mater Chem A 6:7449–7456CrossRef Han X, Zhang Z, You R, Zheng G, Li C, Chen S, Yang Y (2018) Capitalization of interfacial AlON interactions to achieve stable binder-free porous silicon/carbon anodes. J Mater Chem A 6:7449–7456CrossRef
17.
Zurück zum Zitat Xiao C, Du N, Shi X, Zhang H, Yang D (2014) Large-scale synthesis of Si@C three-dimensional porous structures as high-performance anode materials for lithium-ion batteries. J Mater Chem A 2:20494–20499CrossRef Xiao C, Du N, Shi X, Zhang H, Yang D (2014) Large-scale synthesis of Si@C three-dimensional porous structures as high-performance anode materials for lithium-ion batteries. J Mater Chem A 2:20494–20499CrossRef
18.
Zurück zum Zitat Zhang Y, Du N, Chen Y, Lin Y, Jiang J, He Y, Lei Y, Yang D (2018) Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes. Nanoscale 10:5626–5633CrossRef Zhang Y, Du N, Chen Y, Lin Y, Jiang J, He Y, Lei Y, Yang D (2018) Carbon dioxide as a green carbon source for the synthesis of carbon cages encapsulating porous silicon as high performance lithium-ion battery anodes. Nanoscale 10:5626–5633CrossRef
19.
Zurück zum Zitat Chen Y, Lin Y, Du N, Zhang Y, Zhang H, Yang D (2017) A critical SiOx layer on Si porous structures to construct highly-reversible anode materials for lithium-ion batteries. Chem Commun 53:6101–6104CrossRef Chen Y, Lin Y, Du N, Zhang Y, Zhang H, Yang D (2017) A critical SiOx layer on Si porous structures to construct highly-reversible anode materials for lithium-ion batteries. Chem Commun 53:6101–6104CrossRef
20.
Zurück zum Zitat Zhang Z, Wang Z, Lu X (2018) Multishelled Si@Cu microparticles supported on 3D Cu current collectors for stable and binder-free anodes of lithium-ion batteries. ACS Nano 12:3587–3599CrossRef Zhang Z, Wang Z, Lu X (2018) Multishelled Si@Cu microparticles supported on 3D Cu current collectors for stable and binder-free anodes of lithium-ion batteries. ACS Nano 12:3587–3599CrossRef
21.
Zurück zum Zitat Yu C, Chen X, Xiao Z et al (2019) Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett 19:5124–5132CrossRef Yu C, Chen X, Xiao Z et al (2019) Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano Lett 19:5124–5132CrossRef
22.
Zurück zum Zitat Zhang A, Fang Z, Tang Y, Zhou Y, Wu P, Yu G (2019) Inorganic gel-derived metallic frameworks enabling high-performance silicon anodes. Nano Lett 19:6292–6298CrossRef Zhang A, Fang Z, Tang Y, Zhou Y, Wu P, Yu G (2019) Inorganic gel-derived metallic frameworks enabling high-performance silicon anodes. Nano Lett 19:6292–6298CrossRef
23.
Zurück zum Zitat Hui X, Zhao R, Zhang P, Li C, Wang C, Yin L (2019) Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv Energy Mater 9:1901065CrossRef Hui X, Zhao R, Zhang P, Li C, Wang C, Yin L (2019) Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv Energy Mater 9:1901065CrossRef
24.
Zurück zum Zitat Ma Y, Asfaw H, Liu C, Wei B (2016) Encasing Si particles within a versatile TiO2-xFx layer as an extremely reversible anode for high energy-density lithium-ion battery. Nano Energy 30:745–755CrossRef Ma Y, Asfaw H, Liu C, Wei B (2016) Encasing Si particles within a versatile TiO2-xFx layer as an extremely reversible anode for high energy-density lithium-ion battery. Nano Energy 30:745–755CrossRef
25.
Zurück zum Zitat Hou S, Su Y, Chang C, Hu C, Chen T, Yang S, Huang J (2017) The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery. J Power Sources 349:111–120CrossRef Hou S, Su Y, Chang C, Hu C, Chen T, Yang S, Huang J (2017) The synergistic effects of combining the high energy mechanical milling and wet milling on Si negative electrode materials for lithium ion battery. J Power Sources 349:111–120CrossRef
26.
Zurück zum Zitat Kim H, Seo M, Park MH, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Edit 49:2146–2149CrossRef Kim H, Seo M, Park MH, Cho J (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Edit 49:2146–2149CrossRef
27.
Zurück zum Zitat Cao W, Han K, Chen M, Ye H, Sang S (2019) Particle size optimization enabled high initial coulombic efficiency and cycling stability of micro sized porous Si anode via AlSi alloy powder etching. Electrochim Acta 320:134613–134621CrossRef Cao W, Han K, Chen M, Ye H, Sang S (2019) Particle size optimization enabled high initial coulombic efficiency and cycling stability of micro sized porous Si anode via AlSi alloy powder etching. Electrochim Acta 320:134613–134621CrossRef
28.
Zurück zum Zitat McDowell MT, Ryu I, Lee S, Wang C, Nix WD, Cui Y (2012) Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv Mater 24:6034–6041CrossRef McDowell MT, Ryu I, Lee S, Wang C, Nix WD, Cui Y (2012) Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv Mater 24:6034–6041CrossRef
29.
Zurück zum Zitat Zenga Z, Liu N, Zeng Q, Lee S, Mao WL, Cui Y (2016) In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy. Nano Energy 22:105–110CrossRef Zenga Z, Liu N, Zeng Q, Lee S, Mao WL, Cui Y (2016) In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy. Nano Energy 22:105–110CrossRef
30.
Zurück zum Zitat Liu Z, Yu Q, Zhao Y et al (2019) Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev 48:2145–2164 Liu Z, Yu Q, Zhao Y et al (2019) Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev 48:2145–2164
31.
Zurück zum Zitat Kim H, Choi S, Lee S et al (2016) Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett 16:282–288CrossRef Kim H, Choi S, Lee S et al (2016) Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells. Nano Lett 16:282–288CrossRef
32.
Zurück zum Zitat Chen Y, Mao Q, Bao L, Yang T, Lu X, Du N, Zhang Y, Ji Z (2018) Rational design of coaxial MWCNTs@Si/SiOx@C nanocomposites as extending-life anode materials for lithium-ion batteries. Ceram Int 44:16660–16667CrossRef Chen Y, Mao Q, Bao L, Yang T, Lu X, Du N, Zhang Y, Ji Z (2018) Rational design of coaxial MWCNTs@Si/SiOx@C nanocomposites as extending-life anode materials for lithium-ion batteries. Ceram Int 44:16660–16667CrossRef
33.
Zurück zum Zitat Chen D, Yi R, Chen S, Xu T, Gordin ML, Wang D (2014) Facile synthesis of graphene-silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes. Solid State Ion 254:65–71CrossRef Chen D, Yi R, Chen S, Xu T, Gordin ML, Wang D (2014) Facile synthesis of graphene-silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes. Solid State Ion 254:65–71CrossRef
34.
Zurück zum Zitat Chen Y, Bao L, Du N, Yang T, Mao Q, Lu X, Lin Y, Ji Z (2019) In situ synthesis of carbon doped porous silicon nanocomposites as high performance anodes for lithium-ion batteries. Nanotechnology 30:035602–035610CrossRef Chen Y, Bao L, Du N, Yang T, Mao Q, Lu X, Lin Y, Ji Z (2019) In situ synthesis of carbon doped porous silicon nanocomposites as high performance anodes for lithium-ion batteries. Nanotechnology 30:035602–035610CrossRef
35.
Zurück zum Zitat Zhang X, Qiu X, Kong D, Zhou L, Li Z, Li X, Zhi L (2017) Silicene flowers: a dual stabilized silicon building block for high-performance lithium battery anodes. ACS Nano 11:7476–7484CrossRef Zhang X, Qiu X, Kong D, Zhou L, Li Z, Li X, Zhi L (2017) Silicene flowers: a dual stabilized silicon building block for high-performance lithium battery anodes. ACS Nano 11:7476–7484CrossRef
36.
Zurück zum Zitat Hou G, Cheng B, Cao Y et al (2016) Scalable production of 3D plum-pudding-like Si/C spheres: towards practical application in Li-ion batteries. Nano Energy 24:111–120CrossRef Hou G, Cheng B, Cao Y et al (2016) Scalable production of 3D plum-pudding-like Si/C spheres: towards practical application in Li-ion batteries. Nano Energy 24:111–120CrossRef
37.
Zurück zum Zitat Zhu B, Liu G, Lv G et al (2019) Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes. Sci Adv 5:eaax0651CrossRef Zhu B, Liu G, Lv G et al (2019) Minimized lithium trapping by isovalent isomorphism for high initial coulombic efficiency of silicon anodes. Sci Adv 5:eaax0651CrossRef
38.
Zurück zum Zitat Dyjak S, Kicinski W, Norek M, Huczko A, Labedz O, Budner B, Polanski M (2016) Hierarchical nanoporous graphenic carbon materials through an instant self-sustaining magnesiothermic reduction. Carbon 96:937–946CrossRef Dyjak S, Kicinski W, Norek M, Huczko A, Labedz O, Budner B, Polanski M (2016) Hierarchical nanoporous graphenic carbon materials through an instant self-sustaining magnesiothermic reduction. Carbon 96:937–946CrossRef
39.
Zurück zum Zitat Yang C, Zhang Y, Zhou J et al (2018) Hollow Si/SiOx nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage. J Mater Chem A 6:8039–8046CrossRef Yang C, Zhang Y, Zhou J et al (2018) Hollow Si/SiOx nanosphere/nitrogen-doped carbon superstructure with a double shell and void for high-rate and long-life lithium-ion storage. J Mater Chem A 6:8039–8046CrossRef
40.
Zurück zum Zitat Jaumann T, Gerwig M, Balach J et al (2017) Dichlorosilane-derived nano-silicon inside hollow carbon spheres as high-performance anode in Li-ion batteries. J Mater Chem A 5:9262–9271CrossRef Jaumann T, Gerwig M, Balach J et al (2017) Dichlorosilane-derived nano-silicon inside hollow carbon spheres as high-performance anode in Li-ion batteries. J Mater Chem A 5:9262–9271CrossRef
Metadaten
Titel
Multi-step low-cost synthesis of ultrafine silicon porous structures for high-reversible lithium-ion battery anodes
verfasst von
Yifan Chen
Yongjun Yuan
Cong Xu
Liang Bao
Tao Yang
Ning Du
Yangfan Lin
Huaiwei Zhang
Publikationsdatum
06.07.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 28/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05021-7

Weitere Artikel der Ausgabe 28/2020

Journal of Materials Science 28/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.