Skip to main content

2024 | OriginalPaper | Buchkapitel

5. Nash and Stackelberg Equilibrium

verfasst von : Julio B. Clempner, Alexander Poznyak

Erschienen in: Optimization and Games for Controllable Markov Chains

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We provide an approach to locating the Nash equilibrium in this chapter. The technique depends on identifying a scalar \(\lambda ^{*}\) and the associated strategies \(d^{*}(\lambda ^{*})\) fixing particular boundaries (min and max) that belong to the Pareto front. Bounds refer to limits placed by the player over the Pareto front that form a specific decision region where the strategies can be selected. We first use a nonlinear programming issue to illustrate the Pareto front of the game, introducing a set of linear constraints for the Markov chain game based on the c-variable technique. We suggest using the Euler method and a penalty function with regularization to solve the strong Nash equilibrium issue. The convergence to a single (strong) equilibrium point is ensured using Tikhonov’s regularization method. The subsequent single-objective restricted problems that result from using the regularized functional of the game were then solved using a nonlinear programming technique. We use the gradient approach to resolve the first-order optimality requirements in order to accomplish the aim. The approach solves an optimization issue by adding linear constraints necessary to identify the best strong strategy, d (lambda d), starting from a utopia point (Pareto optimum point) given an initial lambda of the individual objectives. We demonstrate that the game’s functional in the regularized issue decreases and ultimately converges, demonstrating the presence and exclusivity of strong Nash equilibrium (Pareto-optimal Nash equilibrium). We also provide a method for calculating the Markov chain games’ strong Stackelberg/Nash equilibrium. The minimization of the \(L p-\)norm, which shortens the distance to the utopian point in Euclidian space, is taken into consideration while solving the cooperative n-leaders and m-followers Markov game. Next, we formulate a Pareto-optimal solution to the optimization issue. For finding the strong Lp-Stackelberg/Nash equilibrium, we use a bi-level programming technique that is carried out through extraproximal optimization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The concept of Nash equilibrium dates back to Cournot, who used it to explain how rival enterprises choose their outputs in 1838 [19].
 
Literatur
1.
Zurück zum Zitat Antipin, A.S.: An extraproximal method for solving equilibrium programming problems and games. Comput. Math. Math. Phys. 45(11), 1893–1914 (2005)MathSciNet Antipin, A.S.: An extraproximal method for solving equilibrium programming problems and games. Comput. Math. Math. Phys. 45(11), 1893–1914 (2005)MathSciNet
2.
Zurück zum Zitat Clempner, J.B.: Setting cournot versus lyapunov games stability conditions and equilibrium point properties. Int. Game Theory Rev. 17, 1–10 (2015) Clempner, J.B.: Setting cournot versus lyapunov games stability conditions and equilibrium point properties. Int. Game Theory Rev. 17, 1–10 (2015)
3.
Zurück zum Zitat Clempner, J.B.: A proximal/gradient approach for computing the Nash equilibrium in controllable Markov games. J. Optim. Theory Appl. 188(3), 847–862 (2021)MathSciNetCrossRefMATH Clempner, J.B.: A proximal/gradient approach for computing the Nash equilibrium in controllable Markov games. J. Optim. Theory Appl. 188(3), 847–862 (2021)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Clempner, J.B., Poznyak, A.S.: Convergence method, properties and computational complexity for Lyapunov games. Int. J. Appl. Math. Comput. Sci. 21(2), 349–361 (2011)MathSciNetCrossRefMATH Clempner, J.B., Poznyak, A.S.: Convergence method, properties and computational complexity for Lyapunov games. Int. J. Appl. Math. Comput. Sci. 21(2), 349–361 (2011)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Clempner, J.B., Poznyak, A.S.: Analysis of best-reply strategies in repeated finite Markov chains games. In: IEEE Conference on Decision and Control (2013) Clempner, J.B., Poznyak, A.S.: Analysis of best-reply strategies in repeated finite Markov chains games. In: IEEE Conference on Decision and Control (2013)
6.
Zurück zum Zitat Clempner, J.B., Poznyak, A.S.: Computing the strong Nash equilibrium for Markov chains games. Appl. Math. Comput 265, 911–927 (2015)MathSciNetMATH Clempner, J.B., Poznyak, A.S.: Computing the strong Nash equilibrium for Markov chains games. Appl. Math. Comput 265, 911–927 (2015)MathSciNetMATH
7.
Zurück zum Zitat Clempner, J.B., Poznyak, A.S.: Convergence analysis for pure and stationary strategies in repeated potential games: Nash, Lyapunov and correlated equilibria. Expert Syst. Appl. 46, 474–484 (2016)CrossRef Clempner, J.B., Poznyak, A.S.: Convergence analysis for pure and stationary strategies in repeated potential games: Nash, Lyapunov and correlated equilibria. Expert Syst. Appl. 46, 474–484 (2016)CrossRef
8.
Zurück zum Zitat Clempner, J.B., Poznyak, A.S.: A Tikhonov regularization parameter approach for solving Lagrange constrained optimization problems. Eng. Optim. 50(11), 1996–2012 (2018)MathSciNetCrossRefMATH Clempner, J.B., Poznyak, A.S.: A Tikhonov regularization parameter approach for solving Lagrange constrained optimization problems. Eng. Optim. 50(11), 1996–2012 (2018)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Clempner, J.B., Poznyak, A.S.: A Tikhonov regularized penalty function approach for solving polylinear programming problems. J. Comput. Appl. Math. 328, 267–286 (2018)MathSciNetCrossRefMATH Clempner, J.B., Poznyak, A.S.: A Tikhonov regularized penalty function approach for solving polylinear programming problems. J. Comput. Appl. Math. 328, 267–286 (2018)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Clempner, J.B., Poznyak, A.S.: Finding the strong Nash equilibrium: computation, existence and characterization for Markov games. J. Optim. Theory Appl. 186, 1029–1052 (2020)MathSciNetCrossRefMATH Clempner, J.B., Poznyak, A.S.: Finding the strong Nash equilibrium: computation, existence and characterization for Markov games. J. Optim. Theory Appl. 186, 1029–1052 (2020)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Dreves, A., Kanzow, C., Stein, O.: Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems. J. Glob. Optim. 53(4), 587–614 (2012) Dreves, A., Kanzow, C., Stein, O.: Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems. J. Glob. Optim. 53(4), 587–614 (2012)
13.
Zurück zum Zitat Facchinei, F., Kanzow, C., Sagratella, S.: Solving quasi-variational inequalities via their KKT conditions. Math. Program. 144(1–2), 369–412 (2014)MathSciNetCrossRefMATH Facchinei, F., Kanzow, C., Sagratella, S.: Solving quasi-variational inequalities via their KKT conditions. Math. Program. 144(1–2), 369–412 (2014)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Facchinei, F., Sagratella, S.: On the computation of all solutions of jointly convex generalized Nash equilibrium problems. Optim. Lett. 5(3), 531–547 (2011) Facchinei, F., Sagratella, S.: On the computation of all solutions of jointly convex generalized Nash equilibrium problems. Optim. Lett. 5(3), 531–547 (2011)
15.
Zurück zum Zitat Gabriel, S.A., Siddiqui, S., Conejo, A.J., Ruiz, C.: Solving discretely-constrained Nash-Cournot games with an application to power markets. Netw. Spat. Econ. 13(3), 307–326 (2013)MathSciNetCrossRefMATH Gabriel, S.A., Siddiqui, S., Conejo, A.J., Ruiz, C.: Solving discretely-constrained Nash-Cournot games with an application to power markets. Netw. Spat. Econ. 13(3), 307–326 (2013)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Kreps, D.M.: Nash equilibrium. In: Game Theory, pp. 167–177. Springer (1989) Kreps, D.M.: Nash equilibrium. In: Game Theory, pp. 167–177. Springer (1989)
17.
Zurück zum Zitat Nabetani, K., Tseng, P., Fukushima, M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. 8(3), 423–452 (2011)MathSciNetCrossRefMATH Nabetani, K., Tseng, P., Fukushima, M.: Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints. Comput. Optim. Appl. 8(3), 423–452 (2011)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994) Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)
20.
Zurück zum Zitat Tanaka, K., Yokoyama, K.: On \(\epsilon \)-equilibrium point in a noncooperative n-person game. J. Math. Anal. 160, 413–423 (1991)MathSciNetCrossRefMATH Tanaka, K., Yokoyama, K.: On \(\epsilon \)-equilibrium point in a noncooperative n-person game. J. Math. Anal. 160, 413–423 (1991)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the Stackelberg/Nash equilibria using the extraproximal method: convergence analysis and implementation details for Markov chains games. Int. J. Appl. Math. Comput. Sci. 25(2), 337–351 (2015)MathSciNetCrossRefMATH Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the Stackelberg/Nash equilibria using the extraproximal method: convergence analysis and implementation details for Markov chains games. Int. J. Appl. Math. Comput. Sci. 25(2), 337–351 (2015)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Trejo, K.K., Clempner, J.B., Poznyak, A.S.: An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games. Kibernetika 52(2), 258–279 (2016)MathSciNetMATH Trejo, K.K., Clempner, J.B., Poznyak, A.S.: An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games. Kibernetika 52(2), 258–279 (2016)MathSciNetMATH
23.
Zurück zum Zitat Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the Lp-strong Nash equilibrium for Markov chains games. Appl. Math. Modell. 41, 399–418 (2017)CrossRefMATH Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the Lp-strong Nash equilibrium for Markov chains games. Appl. Math. Modell. 41, 399–418 (2017)CrossRefMATH
24.
Zurück zum Zitat von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, 2nd rev. Princeton University Press (1947) von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior, 2nd rev. Princeton University Press (1947)
Metadaten
Titel
Nash and Stackelberg Equilibrium
verfasst von
Julio B. Clempner
Alexander Poznyak
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-43575-1_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.