Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 3/2018

06.10.2017 | Original Paper

Optimization and economic analysis of amine-based acid gas capture unit using monoethanolamine/methyl diethanolamine

verfasst von: Li Chin Law, Nurhazwani Yusoff Azudin, Syamsul Rizal Abd. Shukor

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, process optimization and economic analysis of amine-based acid gas capture unit using monoethanolamine (MEA) and methyl diethanolamine (MDEA) blends have been carried out using Aspen Plus (version 8.8). Amine-based CO2 absorption technology is proposed in this study to be retrofitted into the power plant due to its high selectivity and high absorption capacity. However, the associated energy penalty to such technology is relatively high and energy intensive and exhibits process dynamic which necessitates more research to ensure a significant reduction in carbon capture costs achievable. The present work tackles these limitations by analysing the steady-state simulation via Aspen Plus (version 8.8) in determining the technical and economic parameters that make CO2 capture system more efficient, economic and less energy intensive. Optimization of the process was aimed towards minimal reboiler heat duty and maximum CO2 removal efficiency in having the least economic impact of the process. The optimal operating conditions resulted from this study were found to be at 30 °C (1 atm.) for the absorber and at 120 °C (2 atm.) for stripper. The methyl diethanolamine (MDEA) to monoethanolamine (MEA) ratio is fixed at 3:7 with 40 wt% of amine in the solvent. The results showed an increase of 5.5% in acid gas removal rate which resulted in 91.27% of CO2 removal rate as compared to the optimized parameters obtained by Tenaga Nasional Berhad Research’s (TNBR) pilot plant case study situated in Kajang, Selangor. A 300% reduction in energy penalty and heat duty cost is achieved when MEA/MDEA mixture is used instead of MEA alone, resulting in a more economic acid gas removal process with optimum operation. The results showed that this optimization successfully achieved significant energy saving whilst minimizing greenhouse gas emission bringing a significant beneficial environmental and economic impact.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alptekin G, Jayaraman A, Copeland R, Dietz S (2009) A low cost high capacity regenerable sorbent for post combustion CO2 capture. AIChE annual meeting, 4 November 2013, San Francisco, USA Alptekin G, Jayaraman A, Copeland R, Dietz S (2009) A low cost high capacity regenerable sorbent for post combustion CO2 capture. AIChE annual meeting, 4 November 2013, San Francisco, USA
Zurück zum Zitat Amann JM, Descamps C, Kanniche M, Bouallou C (2007) Modeling of the CO2 capture in post-combustion. Sci Study Res 8(1):77–90 Amann JM, Descamps C, Kanniche M, Bouallou C (2007) Modeling of the CO2 capture in post-combustion. Sci Study Res 8(1):77–90
Zurück zum Zitat Aroonwilas A, Tontiwachwuthikul P (1997) High-efficiency structured packing for CO2 separation using 2-amino-2-methyl- 1-propanol (AMP). Sep Purif Technol 12:67–79CrossRef Aroonwilas A, Tontiwachwuthikul P (1997) High-efficiency structured packing for CO2 separation using 2-amino-2-methyl- 1-propanol (AMP). Sep Purif Technol 12:67–79CrossRef
Zurück zum Zitat Aroonwilas A, Veawab A (2009) Integration of CO2 capture unit using blended MEA–AMP solution into coal-fired power plants. Energy Procedia 1:4315–4321CrossRef Aroonwilas A, Veawab A (2009) Integration of CO2 capture unit using blended MEA–AMP solution into coal-fired power plants. Energy Procedia 1:4315–4321CrossRef
Zurück zum Zitat Aspen Technology, Inc. (2000) Aspen Plus user guide. Aspen Technology, Inc. (Version 10). Cambridge Aspen Technology, Inc. (2000) Aspen Plus user guide. Aspen Technology, Inc. (Version 10). Cambridge
Zurück zum Zitat AspenTech (2008–2014) Rate-based model of the CO2 capture process by MDEA using Aspen Plus. Aspen Technology, Inc., 200 Wheeler Road, Burlington, MA 01803-5501, USA AspenTech (2008–2014) Rate-based model of the CO2 capture process by MDEA using Aspen Plus. Aspen Technology, Inc., 200 Wheeler Road, Burlington, MA 01803-5501, USA
Zurück zum Zitat Austgen DM, Rochelle GT, Peng X, Chen CC (1989) Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation. Ind Eng Chem Res 28:1060–1073CrossRef Austgen DM, Rochelle GT, Peng X, Chen CC (1989) Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation. Ind Eng Chem Res 28:1060–1073CrossRef
Zurück zum Zitat Bandyopadhyay A (2011) Amine versus ammonia absorption of CO2 as a measure of reducing GHG emission: a critical analysis. Clean Technol Environ Policy 13(2):269–294CrossRef Bandyopadhyay A (2011) Amine versus ammonia absorption of CO2 as a measure of reducing GHG emission: a critical analysis. Clean Technol Environ Policy 13(2):269–294CrossRef
Zurück zum Zitat Ben-Mansour R, Habib MA, Bamidele OE, Basha M, Qasem NAA, Peedikakkal A, Laoui T, Ali M (2016) Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—a review. Appl Energy 161:225–255CrossRef Ben-Mansour R, Habib MA, Bamidele OE, Basha M, Qasem NAA, Peedikakkal A, Laoui T, Ali M (2016) Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations—a review. Appl Energy 161:225–255CrossRef
Zurück zum Zitat Bernhardsen IM, Knuutila HK (2017) A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa. Int J Greenhouse Gas Control 61:27–48CrossRef Bernhardsen IM, Knuutila HK (2017) A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa. Int J Greenhouse Gas Control 61:27–48CrossRef
Zurück zum Zitat Booth NJ (2005) Secondment to the International Test Centre for CO2 Capture (ITC), University of Regina, Canada. January–March 2005 Report No. COAL R303 DTI/Pub URN 06/798 Booth NJ (2005) Secondment to the International Test Centre for CO2 Capture (ITC), University of Regina, Canada. January–March 2005 Report No. COAL R303 DTI/Pub URN 06/798
Zurück zum Zitat Chen C-C, Boston JF, Britt HI, Evans LB (1979) Extension and application of the Pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes. AIChE J 25:820–831CrossRef Chen C-C, Boston JF, Britt HI, Evans LB (1979) Extension and application of the Pitzer equation for vapor-liquid equilibrium of aqueous electrolyte systems with molecular solutes. AIChE J 25:820–831CrossRef
Zurück zum Zitat Chunbo Y, Guangwen C, Quan Y (2012) Process characteristics of CO2 absorption by aqueous monoethanolamine in a microchannel reactor. Chin J Chem Eng 20(1):111–119CrossRef Chunbo Y, Guangwen C, Quan Y (2012) Process characteristics of CO2 absorption by aqueous monoethanolamine in a microchannel reactor. Chin J Chem Eng 20(1):111–119CrossRef
Zurück zum Zitat Dawodu OF, Meisen A (1996) Effects of composition on the performance of alkanolamine blends for gas sweetening. Chem Eng Commun 144(1):103–112CrossRef Dawodu OF, Meisen A (1996) Effects of composition on the performance of alkanolamine blends for gas sweetening. Chem Eng Commun 144(1):103–112CrossRef
Zurück zum Zitat Dyment J, Watanasiri S (2015) Acid gas cleaning using amine solvents: validation with experimental and plant data. Aspen Technology, US Dyment J, Watanasiri S (2015) Acid gas cleaning using amine solvents: validation with experimental and plant data. Aspen Technology, US
Zurück zum Zitat EC (Energy Commision) (2016) Year in review—2015, Peninsular Malaysia Electricity Supply Industry Outlook 2016, Suruhanjaya Tenaga (Energy Commision), Putrajaya, Malaysia EC (Energy Commision) (2016) Year in review—2015, Peninsular Malaysia Electricity Supply Industry Outlook 2016, Suruhanjaya Tenaga (Energy Commision), Putrajaya, Malaysia
Zurück zum Zitat Goto K, Yogo K, Higashii T (2013) A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture. Appl Energy 111:710–720CrossRef Goto K, Yogo K, Higashii T (2013) A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture. Appl Energy 111:710–720CrossRef
Zurück zum Zitat Gutierrez JP, Benitez LA, Ale Ruiz EL, Erdmann E (2016) A sensitivity analysis and a comparison of two simulators performance for the process of natural gas sweetening. J Nat Gas Sci Eng 31:800–807CrossRef Gutierrez JP, Benitez LA, Ale Ruiz EL, Erdmann E (2016) A sensitivity analysis and a comparison of two simulators performance for the process of natural gas sweetening. J Nat Gas Sci Eng 31:800–807CrossRef
Zurück zum Zitat Haghtalab A, Tafti MD (2007) Electrolyte UNIQUAC-NRF model to study the solubility of acid gases in alkanolamines. Ind Eng Chem Res 46(18):6053–6060CrossRef Haghtalab A, Tafti MD (2007) Electrolyte UNIQUAC-NRF model to study the solubility of acid gases in alkanolamines. Ind Eng Chem Res 46(18):6053–6060CrossRef
Zurück zum Zitat Harun N, Nittaya T, Douglas PL, Croiset E, Ricardez-Sandoval LA (2012) Dynamic simulation of MEA absorption process for CO2 capture from power plants. Int J Greenhouse Gas Control 10:295–309CrossRef Harun N, Nittaya T, Douglas PL, Croiset E, Ricardez-Sandoval LA (2012) Dynamic simulation of MEA absorption process for CO2 capture from power plants. Int J Greenhouse Gas Control 10:295–309CrossRef
Zurück zum Zitat Hook RJ (1997) An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Ind Eng Chem Res 36(5):1779–1790CrossRef Hook RJ (1997) An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Ind Eng Chem Res 36(5):1779–1790CrossRef
Zurück zum Zitat Hüser N, Schmitz O, Kenig EY (2017) A comparative study of different amine-based solvents for CO2-capture using the rate-based approach. Chem Eng Sci 157:221–231CrossRef Hüser N, Schmitz O, Kenig EY (2017) A comparative study of different amine-based solvents for CO2-capture using the rate-based approach. Chem Eng Sci 157:221–231CrossRef
Zurück zum Zitat Huttenhuis P, Agrawal N, Hogendoorn J, Versteeg G (2007) Gas solubility of H2S and CO2 in aqueous solutions of N-methyldiethanolamine. J Petrol Sci Eng 55:122–134CrossRef Huttenhuis P, Agrawal N, Hogendoorn J, Versteeg G (2007) Gas solubility of H2S and CO2 in aqueous solutions of N-methyldiethanolamine. J Petrol Sci Eng 55:122–134CrossRef
Zurück zum Zitat Jou FY, Mather AE, Otto FD (1995) The solubility of CO2 in a 30 mass percent monoethanolamine solution. Can J Chem Eng 73:140–147CrossRef Jou FY, Mather AE, Otto FD (1995) The solubility of CO2 in a 30 mass percent monoethanolamine solution. Can J Chem Eng 73:140–147CrossRef
Zurück zum Zitat Kaplan S (2011) Power plants: characteristics and costs. DIANE Publishing, Collingdale Kaplan S (2011) Power plants: characteristics and costs. DIANE Publishing, Collingdale
Zurück zum Zitat Kidnay AJ, Parrish WR, McCartney DG (2011) Fundamentals of natural gas processing, 2nd edn. CRC Press, Boca RatonCrossRef Kidnay AJ, Parrish WR, McCartney DG (2011) Fundamentals of natural gas processing, 2nd edn. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443CrossRef Leung DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev 39:426–443CrossRef
Zurück zum Zitat Luo X, Fu K, Yang Z, Gao H, Rongwong W, Liang Z, Tontiwachwuthikul P (2015) Experimental studies of reboiler heat duty for CO2 desorption from triethylenetetramine (TETA) and triethylenetetramine (TETA) + N-methyldiethanolamine (MDEA). Ind Eng Chem Res 54(34):8554–8560CrossRef Luo X, Fu K, Yang Z, Gao H, Rongwong W, Liang Z, Tontiwachwuthikul P (2015) Experimental studies of reboiler heat duty for CO2 desorption from triethylenetetramine (TETA) and triethylenetetramine (TETA) + N-methyldiethanolamine (MDEA). Ind Eng Chem Res 54(34):8554–8560CrossRef
Zurück zum Zitat Männistö M (2015) New Lewis-cell type measurement apparatus setup and validation long with new acid gas absorption measurement into phase change solvents. School of Chemical Technology, Aalto Männistö M (2015) New Lewis-cell type measurement apparatus setup and validation long with new acid gas absorption measurement into phase change solvents. School of Chemical Technology, Aalto
Zurück zum Zitat Mock B, Evans LB, Chen C-C (1986) Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems. AIChE J 32(10):1655–1664CrossRef Mock B, Evans LB, Chen C-C (1986) Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems. AIChE J 32(10):1655–1664CrossRef
Zurück zum Zitat Mudhasakula S, Kua HM, Douglas PL (2013) A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator. Int J Greenhouse Gas Control 15:134–141CrossRef Mudhasakula S, Kua HM, Douglas PL (2013) A simulation model of a CO2 absorption process with methyldiethanolamine solvent and piperazine as an activator. Int J Greenhouse Gas Control 15:134–141CrossRef
Zurück zum Zitat Nittaya T, Douglas PL, Croiset E, Ricardez-Sandoval LA (2014) Dynamic modelling and controllability studies of a commercial-scale MEA absorption processes for CO2 capture from coal-fired power plant. Energy Procedia 63:1595–1600CrossRef Nittaya T, Douglas PL, Croiset E, Ricardez-Sandoval LA (2014) Dynamic modelling and controllability studies of a commercial-scale MEA absorption processes for CO2 capture from coal-fired power plant. Energy Procedia 63:1595–1600CrossRef
Zurück zum Zitat Pani F, Gaunand A, Richon D, Cadours R, Bouallou C (1997) Absorption of H2S by an aqueous methyldiethanolamine solution at 296 and 343 K. J Chem Eng Data 42:865–870CrossRef Pani F, Gaunand A, Richon D, Cadours R, Bouallou C (1997) Absorption of H2S by an aqueous methyldiethanolamine solution at 296 and 343 K. J Chem Eng Data 42:865–870CrossRef
Zurück zum Zitat Rani NHA, Muda N, Shukor SRA (2015) Syngas clean up system using amine for gas turbine applications. In: 5th international conference on environment 2015 (ICENV 2015), 18–19 August 2015 Penang, Malaysia, pp 577–584 Rani NHA, Muda N, Shukor SRA (2015) Syngas clean up system using amine for gas turbine applications. In: 5th international conference on environment 2015 (ICENV 2015), 18–19 August 2015 Penang, Malaysia, pp 577–584
Zurück zum Zitat Sartori G, Savage DW (1983) Sterically hindered amines for carbon dioxide removal from gases. Ind Eng Chem Fundam 22(2):239–249CrossRef Sartori G, Savage DW (1983) Sterically hindered amines for carbon dioxide removal from gases. Ind Eng Chem Fundam 22(2):239–249CrossRef
Zurück zum Zitat Slagle JC (2013) Improve your gas plant’s performance in the middle east part 1: the amine plant. Arab States, Gas Processors Association–Gulf Cooperation Council 21st Technical Conference, 8 May 2013, Doha, Qatar, pp 1–17 Slagle JC (2013) Improve your gas plant’s performance in the middle east part 1: the amine plant. Arab States, Gas Processors Association–Gulf Cooperation Council 21st Technical Conference, 8 May 2013, Doha, Qatar, pp 1–17
Zurück zum Zitat Sreedhara I, Nahara T, Venugopal A, Srinivasc B (2017) Carbon capture by absorption—path covered and ahead. Renew Sustain Energy Rev 76:1080–1107CrossRef Sreedhara I, Nahara T, Venugopal A, Srinivasc B (2017) Carbon capture by absorption—path covered and ahead. Renew Sustain Energy Rev 76:1080–1107CrossRef
Zurück zum Zitat Stec M, Tatarczuk A, Więcław-Solny L, Krótki A, Spietz T, Wilk A, Śpiewak D (2016) Demonstration of a post-combustion carbon capture pilot plant using amine-based solvents at the Łaziska Power Plant in Poland. Clean Technol Environ Policy 18:151–160CrossRef Stec M, Tatarczuk A, Więcław-Solny L, Krótki A, Spietz T, Wilk A, Śpiewak D (2016) Demonstration of a post-combustion carbon capture pilot plant using amine-based solvents at the Łaziska Power Plant in Poland. Clean Technol Environ Policy 18:151–160CrossRef
Zurück zum Zitat Stéphenne K (2014) Start-Up of world’s first commercial post-combustion coal fired CCS project: contribution of Shell Cansolv to SaskPower Boundary Dam ICCS Project. Energy Procedia 63:6106–6110CrossRef Stéphenne K (2014) Start-Up of world’s first commercial post-combustion coal fired CCS project: contribution of Shell Cansolv to SaskPower Boundary Dam ICCS Project. Energy Procedia 63:6106–6110CrossRef
Zurück zum Zitat Thorbjornsson A, Wachtmeister H, Wang JL, Hook M (2015) Carbon capture and coal consumption: implications of energy penalties and large scale deployment. Energy Strategy Rev 7:18–28CrossRef Thorbjornsson A, Wachtmeister H, Wang JL, Hook M (2015) Carbon capture and coal consumption: implications of energy penalties and large scale deployment. Energy Strategy Rev 7:18–28CrossRef
Zurück zum Zitat Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89:1609–1624CrossRef Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89:1609–1624CrossRef
Zurück zum Zitat Yeh JT, Pennline HW, Resnik KP (2001) Study of CO2 absorption and desorption in a packed column. Energy Fuels 15:274–278CrossRef Yeh JT, Pennline HW, Resnik KP (2001) Study of CO2 absorption and desorption in a packed column. Energy Fuels 15:274–278CrossRef
Zurück zum Zitat Yu CH, Tan CS (2013) Mixed Alkanolamines with Low Regeneration Energy for CO2 Capture in a Rotating Packed Bed. Energy Procedia 37:455–460CrossRef Yu CH, Tan CS (2013) Mixed Alkanolamines with Low Regeneration Energy for CO2 Capture in a Rotating Packed Bed. Energy Procedia 37:455–460CrossRef
Zurück zum Zitat Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769 Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769
Zurück zum Zitat Zhang R, Luo X, Yang Q, Cao F, Chen S, Liang Z (2015) Impact of the inter- and intramolecular tertiary amino group on the primary amino group in the CO2 absorption process. Ind Eng Chem Res 55:7210–7217CrossRef Zhang R, Luo X, Yang Q, Cao F, Chen S, Liang Z (2015) Impact of the inter- and intramolecular tertiary amino group on the primary amino group in the CO2 absorption process. Ind Eng Chem Res 55:7210–7217CrossRef
Zurück zum Zitat Zhang R, Liang Z, Liu H, Rongwong W, Luo X, Idem R, Yang Q (2016) Study of formation of bicarbonate ions in CO2-loaded aqueous single 1DMA2P and MDEA tertiary amines and blended MEA–1DMA2P and MEA–MDEA amines for low heat of regeneration. Ind Eng Chem Res 55:3710–3717CrossRef Zhang R, Liang Z, Liu H, Rongwong W, Luo X, Idem R, Yang Q (2016) Study of formation of bicarbonate ions in CO2-loaded aqueous single 1DMA2P and MDEA tertiary amines and blended MEA–1DMA2P and MEA–MDEA amines for low heat of regeneration. Ind Eng Chem Res 55:3710–3717CrossRef
Zurück zum Zitat Zhu B, Liu Q, Zhou Q, Yang J, Ding J, Wen J (2014) Absorption of carbon dioxide from flue gas using blended amine solutions. Chem Eng Technol 37(4):635–642CrossRef Zhu B, Liu Q, Zhou Q, Yang J, Ding J, Wen J (2014) Absorption of carbon dioxide from flue gas using blended amine solutions. Chem Eng Technol 37(4):635–642CrossRef
Zurück zum Zitat Ziaii S, Rochelle GT, Edgar TF (2009) Modeling to minimize energy use for CO2 capture in power plants by monoethanolamine. Ind Eng Chem Res 48:6105–6111CrossRef Ziaii S, Rochelle GT, Edgar TF (2009) Modeling to minimize energy use for CO2 capture in power plants by monoethanolamine. Ind Eng Chem Res 48:6105–6111CrossRef
Zurück zum Zitat Zurlo J (2013) Optimization of amine units and improve refinery profitability. Gulf Publishing Company, Houston Zurlo J (2013) Optimization of amine units and improve refinery profitability. Gulf Publishing Company, Houston
Metadaten
Titel
Optimization and economic analysis of amine-based acid gas capture unit using monoethanolamine/methyl diethanolamine
verfasst von
Li Chin Law
Nurhazwani Yusoff Azudin
Syamsul Rizal Abd. Shukor
Publikationsdatum
06.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 3/2018
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-017-1430-1

Weitere Artikel der Ausgabe 3/2018

Clean Technologies and Environmental Policy 3/2018 Zur Ausgabe