Skip to main content

2015 | OriginalPaper | Buchkapitel

Photocatalytic Splitting of Water

verfasst von : Nathan Skillen, Cathy McCullagh, Morgan Adams

Erschienen in: Environmental Photochemistry Part III

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The use of photocatalysis for the photosplitting of water to generate hydrogen and oxygen has gained interest as a method for the conversion and storage of solar energy. The application of photocatalysis through catalyst engineering, mechanistic studies and photoreactor development has highlighted the potential of this technology, with the number of publications significantly increasing in the past few decades. In 1972 Fujishima and Honda described a photoelectrochemical system capable of generating H2 and O2 using thin-film TiO2. Since this publication, a diverse range of catalysts and platforms have been deployed, along with a varying range of photoreactors coupled with photoelectrochemical and photovoltaic technology. This chapter aims to provide a comprehensive overview of photocatalytic technology applied to overall H2O splitting. An insight into the electronic and geometric structure of catalysts is given based upon the one- and two-step photocatalyst systems. One-step photocatalysts are discussed based upon their d0 and d10 electron configuration and core metal ion including transition metal oxides, typical metal oxides and metal nitrides. The two-step approach, referred to as the Z-scheme, is discussed as an alternative approach to the traditional one-step mechanism, and the potential of the system to utilise visible and solar irradiation. In addition to this the mechanistic procedure of H2O splitting is reviewed to provide the reader with a detailed understanding of the process. Finally, the development of photoreactors and reactor properties are discussed with a view towards the photoelectrochemical splitting of H2O.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible light driven overall water splitting. J Am Chem Soc 127:8286–8287 Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K (2005) GaN:ZnO solid solution as a photocatalyst for visible light driven overall water splitting. J Am Chem Soc 127:8286–8287
2.
Zurück zum Zitat Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K (2005) Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. J Phys Chem B 109(43):20504–20510 Maeda K, Teramura K, Takata T, Hara M, Saito N, Toda K, Inoue Y, Kobayashi H, Domen K (2005) Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst: relationship between physical properties and photocatalytic activity. J Phys Chem B 109(43):20504–20510
3.
Zurück zum Zitat Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111:1042–1048 Lee Y, Terashima H, Shimodaira Y, Teramura K, Hara M, Kobayashi H, Domen K, Yashima M (2007) Zinc germanium oxynitride as a photocatalyst for overall water splitting under visible light. J Phys Chem C 111:1042–1048
4.
Zurück zum Zitat Bard AJ (1979) Photoelectrochemistry and heterogenous photocatalysis at semiconductors. J Photochem Photobiol C 10:59–75 Bard AJ (1979) Photoelectrochemistry and heterogenous photocatalysis at semiconductors. J Photochem Photobiol C 10:59–75
5.
Zurück zum Zitat Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. Chem Commun 7(23):2416–2417 Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2001) Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO3-/I- shuttle redox mediator under visible light irradiation. Chem Commun 7(23):2416–2417
6.
Zurück zum Zitat Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38 Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38
7.
Zurück zum Zitat Bolton JR (1996) Solar photoproduction of hydrogen: a review. Sol Energy 57(1):37–50 Bolton JR (1996) Solar photoproduction of hydrogen: a review. Sol Energy 57(1):37–50
8.
Zurück zum Zitat Esswein A, Nocera D (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107(10):4022–4047 Esswein A, Nocera D (2007) Hydrogen production by molecular photocatalysis. Chem Rev 107(10):4022–4047
9.
Zurück zum Zitat Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Roy Soc Ch 38:253–278 Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Roy Soc Ch 38:253–278
10.
Zurück zum Zitat Amouyal E (1995) Photochemical production of hydrogen and oxygen from water: a review and state of the art. Sol Energy Mater Sol Cell 38(1–4):249–276 Amouyal E (1995) Photochemical production of hydrogen and oxygen from water: a review and state of the art. Sol Energy Mater Sol Cell 38(1–4):249–276
11.
Zurück zum Zitat Dvoranova D, Brezova V, Mazur M, Malati M (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal Environ 37(2):91–105 Dvoranova D, Brezova V, Mazur M, Malati M (2002) Investigations of metal-doped titanium dioxide photocatalysts. Appl Catal Environ 37(2):91–105
12.
Zurück zum Zitat Ikuma Y, Bessho H (2007) Effect of Pt concentration on the production of hydrogen by a photocatalyst. Int J Hydrogen Energy 32(14):2689–2692 Ikuma Y, Bessho H (2007) Effect of Pt concentration on the production of hydrogen by a photocatalyst. Int J Hydrogen Energy 32(14):2689–2692
13.
Zurück zum Zitat Jin Z, Zhang X, Li S, Lu G (2007) 5.1% apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal Commun 8(8):1267–1273 Jin Z, Zhang X, Li S, Lu G (2007) 5.1% apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catal Commun 8(8):1267–1273
14.
Zurück zum Zitat Ohtani B (2008) Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem Lett 37(3):217–229 Ohtani B (2008) Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. Chem Lett 37(3):217–229
15.
Zurück zum Zitat Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations. Energy Environ Sci 2:364–386 Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10 -related electronic configurations. Energy Environ Sci 2:364–386
16.
Zurück zum Zitat Sayama K, Arakawa H (1997) Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt–TiO2 catalyst. J Chem Soc Faraday T 93(8):1647–1654 Sayama K, Arakawa H (1997) Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt–TiO2 catalyst. J Chem Soc Faraday T 93(8):1647–1654
17.
Zurück zum Zitat Yamaguti K, Sato S (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc Faraday T 81:1237–1246 Yamaguti K, Sato S (1985) Photolysis of water over metallized powdered titanium dioxide. J Chem Soc Faraday T 81:1237–1246
18.
Zurück zum Zitat Jeong H, Kim T, Kim D, Kim K (2006) Hydrogen production by the photocatalytic overall water splitting on: effect of preparation method. Int J Hydrogen Energy 31(9):1142–1146 Jeong H, Kim T, Kim D, Kim K (2006) Hydrogen production by the photocatalytic overall water splitting on: effect of preparation method. Int J Hydrogen Energy 31(9):1142–1146
19.
Zurück zum Zitat Takata T, Shinohara K, Tanaka A, Hara M, Kondo JN, Domen K (1997) A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure. J Photoch Photobio A 106(1–3):45–49 Takata T, Shinohara K, Tanaka A, Hara M, Kondo JN, Domen K (1997) A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure. J Photoch Photobio A 106(1–3):45–49
20.
Zurück zum Zitat Ogura S, Kohno M, Sato K, Inoue Y (1998) Photocatalytic properties of M2Ti6O13 (M=Na, K, Rb, Cs) with rectangular tunnel and layer structures: behavior of a surface radical produced by UV irradiation and photocatalytic activity for water decomposition. Phys Chem Chem Phys 1:179–183 Ogura S, Kohno M, Sato K, Inoue Y (1998) Photocatalytic properties of M2Ti6O13 (M=Na, K, Rb, Cs) with rectangular tunnel and layer structures: behavior of a surface radical produced by UV irradiation and photocatalytic activity for water decomposition. Phys Chem Chem Phys 1:179–183
21.
Zurück zum Zitat Inoue Y, Niiyama T, Asai Y, Sato K (1992) Stable photocatalytic activity of BaTi409 combined with ruthenium oxide for decomposition of water. J Chem Soc Chem commun 579–580 Inoue Y, Niiyama T, Asai Y, Sato K (1992) Stable photocatalytic activity of BaTi409 combined with ruthenium oxide for decomposition of water. J Chem Soc Chem commun 579–580
22.
Zurück zum Zitat Reddy RV, Hwang DW, Lee JS (2003) Photocatalytic water splitting over ZrO2 prepared by precipitation method. Korean J Chem Eng 20(6):1026–1029 Reddy RV, Hwang DW, Lee JS (2003) Photocatalytic water splitting over ZrO2 prepared by precipitation method. Korean J Chem Eng 20(6):1026–1029
23.
Zurück zum Zitat Lin H, Lee T, Sie C (2008) Photocatalytic hydrogen production with nickel oxide intercalated K4Nb6O17 under visible light irradiation. Int J Hydrogen Energy 33(15):4055–4063 Lin H, Lee T, Sie C (2008) Photocatalytic hydrogen production with nickel oxide intercalated K4Nb6O17 under visible light irradiation. Int J Hydrogen Energy 33(15):4055–4063
24.
Zurück zum Zitat Sayama K, Arakawa H, Asakura K, Tanaka A, Domen K, Onishi T (1998) Photocatalytic activity and reaction mechanism of Pt-interlaced K4Nb6O17 catalyst on the water splitting in carbonate salt aqueous solution. J Photoch Photobio A 114:125–135 Sayama K, Arakawa H, Asakura K, Tanaka A, Domen K, Onishi T (1998) Photocatalytic activity and reaction mechanism of Pt-interlaced K4Nb6O17 catalyst on the water splitting in carbonate salt aqueous solution. J Photoch Photobio A 114:125–135
25.
Zurück zum Zitat Kim SH, Park S, Lee CW, Han BS, Seo SW, Kim JS, Cho IS, Hong KS (2012) Photophysical and photocatalytic water splitting performance of stibiotantalite type-structure compounds, SbMO4 (M=Nb, Ta). Int J Hydrogen Energy 37(22):16895–16902 Kim SH, Park S, Lee CW, Han BS, Seo SW, Kim JS, Cho IS, Hong KS (2012) Photophysical and photocatalytic water splitting performance of stibiotantalite type-structure compounds, SbMO4 (M=Nb, Ta). Int J Hydrogen Energy 37(22):16895–16902
26.
Zurück zum Zitat Chen W, Li C, Gao H, Yuan J, Shangguan W, Su J, Sun Y (2012) Photocatalytic water splitting on protonated form of layered perovskites K0.5La0.5Bi2M2O9 (M=Ta; Nb) by ion-exchange. Int J Hydrogen Energy 37(17):12846–12851 Chen W, Li C, Gao H, Yuan J, Shangguan W, Su J, Sun Y (2012) Photocatalytic water splitting on protonated form of layered perovskites K0.5La0.5Bi2M2O9 (M=Ta; Nb) by ion-exchange. Int J Hydrogen Energy 37(17):12846–12851
27.
Zurück zum Zitat Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089 Kato H, Asakura K, Kudo A (2003) Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J Am Chem Soc 125:3082–3089
28.
Zurück zum Zitat Kato H, Kudo A (2001) Energy structure and photocatalytic activity for water splitting of Sr2(Ta1 − XNbX)2O7 solid solution. J Photoch Photobio A 145(1–2):129–133 Kato H, Kudo A (2001) Energy structure and photocatalytic activity for water splitting of Sr2(Ta1 − XNbX)2O7 solid solution. J Photoch Photobio A 145(1–2):129–133
29.
Zurück zum Zitat Ikeda S, Fubuki M, Takahara YK, Matsumura M (2006) Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting. Appl Catal Gen 300(2):186–190 Ikeda S, Fubuki M, Takahara YK, Matsumura M (2006) Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting. Appl Catal Gen 300(2):186–190
30.
Zurück zum Zitat Kadowaki H, Saito N, Nishiyama H, Kobayashi H, Shimodaira Y, Inoue Y (2007) Overall splitting of water by RuO2-loaded PbWO4 photocatalyst with d10s2-d0 configuration. J Phys Chem 111:439–444 Kadowaki H, Saito N, Nishiyama H, Kobayashi H, Shimodaira Y, Inoue Y (2007) Overall splitting of water by RuO2-loaded PbWO4 photocatalyst with d10s2-d0 configuration. J Phys Chem 111:439–444
31.
Zurück zum Zitat Sakata Y, Matsuda Y, Yanagida T, Hirata K, Imamura H, Teramura K (2008) Effect of metal Ion addition in a Ni supported Ga2O3 photocatalyst on the photocatalytic overall splitting of H2O. Catal Lett 125:22–26 Sakata Y, Matsuda Y, Yanagida T, Hirata K, Imamura H, Teramura K (2008) Effect of metal Ion addition in a Ni supported Ga2O3 photocatalyst on the photocatalytic overall splitting of H2O. Catal Lett 125:22–26
32.
Zurück zum Zitat Maeda K, Teramura K, Saito N, Inoue Y, Domen K (2006) Improvement of photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting by co-loading Cr and another transition metal. J Catal 243(2):303–308 Maeda K, Teramura K, Saito N, Inoue Y, Domen K (2006) Improvement of photocatalytic activity of (Ga1−xZnx)(N1−xOx) solid solution for overall water splitting by co-loading Cr and another transition metal. J Catal 243(2):303–308
33.
Zurück zum Zitat Sato J, Saito N, Nishiyama H, Inoue Y (2002) Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. J Photoch Photobio A 148(1–3):85–89 Sato J, Saito N, Nishiyama H, Inoue Y (2002) Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. J Photoch Photobio A 148(1–3):85–89
34.
Zurück zum Zitat Moriya Y, Takata T, Domen K (2013) Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 257(13–14):1957–1969 Moriya Y, Takata T, Domen K (2013) Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord Chem Rev 257(13–14):1957–1969
35.
Zurück zum Zitat Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C 12(4):237–268 Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C 12(4):237–268
36.
Zurück zum Zitat Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11(4):179–209 Abe R (2010) Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J Photochem Photobiol C 11(4):179–209
37.
Zurück zum Zitat Jang JS, Kim HG, Lee JS (2012) Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal Today 185(1):270–277 Jang JS, Kim HG, Lee JS (2012) Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting. Catal Today 185(1):270–277
38.
Zurück zum Zitat Pai MR, Banerjee AM, Tripathi AK, Bharadwaj SR (2012) 14—Fundamentals and applications of the photocatalytic water splitting reaction. In: Banerjee S, Tyagi A (eds) Functional materials. Elsevier, London, pp 579–606 Pai MR, Banerjee AM, Tripathi AK, Bharadwaj SR (2012) 14—Fundamentals and applications of the photocatalytic water splitting reaction. In: Banerjee S, Tyagi A (eds) Functional materials. Elsevier, London, pp 579–606
39.
Zurück zum Zitat Yamaguti K, Sato S (1984) Photolysis of water over platinum/titanium dioxide catalyst. Nippon Kagaku Kaishi 2:258–263 Yamaguti K, Sato S (1984) Photolysis of water over platinum/titanium dioxide catalyst. Nippon Kagaku Kaishi 2:258–263
40.
Zurück zum Zitat Hu C, Teng H (2010) Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting. J Catal 272(1):1–8 Hu C, Teng H (2010) Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting. J Catal 272(1):1–8
41.
Zurück zum Zitat Abe R, Higashi M, Sayama K, Abe Y, Sugihara H (2006) Photocatalytic activity of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) for water splitting into H2 and O2. J Phys Chem B 110(5):2219–2226 Abe R, Higashi M, Sayama K, Abe Y, Sugihara H (2006) Photocatalytic activity of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) for water splitting into H2 and O2. J Phys Chem B 110(5):2219–2226
42.
Zurück zum Zitat Inoue Y, Asai Y, Sayama K (1994) Photocatalysts with tunnel structures for decomposition of water part 1.-BaTi, O, a pentagonal prism tunnel structure, and its combination with various promoters. J Chem Soc Faraday T 90(5):797–802 Inoue Y, Asai Y, Sayama K (1994) Photocatalysts with tunnel structures for decomposition of water part 1.-BaTi, O, a pentagonal prism tunnel structure, and its combination with various promoters. J Chem Soc Faraday T 90(5):797–802
43.
Zurück zum Zitat Zheng X, Wei L, Zhang Z, Jiang Q, Wei Y, Xie B, WEI M (2009) Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation. Int J Hydrogen Energy 34(22):9033–9041 Zheng X, Wei L, Zhang Z, Jiang Q, Wei Y, Xie B, WEI M (2009) Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation. Int J Hydrogen Energy 34(22):9033–9041
44.
Zurück zum Zitat Yang J, Yan H, Wang X, Wen F, Wang Z, Fan D, Shi J, Li C (2012) Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J Catal 290:151–157 Yang J, Yan H, Wang X, Wen F, Wang Z, Fan D, Shi J, Li C (2012) Roles of cocatalysts in Pt–PdS/CdS with exceptionally high quantum efficiency for photocatalytic hydrogen production. J Catal 290:151–157
45.
Zurück zum Zitat Mizukoshi Y, Makise Y, Shuto T, Hu J, Tominaga A, Shironita S, Tanabe S (2007) Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason Sonochem 14(3):387–392 Mizukoshi Y, Makise Y, Shuto T, Hu J, Tominaga A, Shironita S, Tanabe S (2007) Immobilization of noble metal nanoparticles on the surface of TiO2 by the sonochemical method: photocatalytic production of hydrogen from an aqueous solution of ethanol. Ultrason Sonochem 14(3):387–392
46.
Zurück zum Zitat Takahashi T, Kakihana M, Yamashita K, Yoshida K, Ikeda S, Hara M, Domen K (1999) Synthesis of NiO-loaded KTiNbO5 photocatalysts by a novel polymerizable complex method. J Alloys Compd 285:77–81 Takahashi T, Kakihana M, Yamashita K, Yoshida K, Ikeda S, Hara M, Domen K (1999) Synthesis of NiO-loaded KTiNbO5 photocatalysts by a novel polymerizable complex method. J Alloys Compd 285:77–81
47.
Zurück zum Zitat Domen K, Kudo A, Shinozaki A, Tanaka A, Maruya K, Onishi T (1986) Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts. J Chem Soc Chem Commun (4):356–357 Domen K, Kudo A, Shinozaki A, Tanaka A, Maruya K, Onishi T (1986) Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts. J Chem Soc Chem Commun (4):356–357
48.
Zurück zum Zitat Huang Y, Wu J, Wei Y, Lin J, Huang M (2008) Hydrothermal synthesis of K2La2Ti3O10 and photocatalytic splitting of water. J Alloys Compd 456(1–2):364–367 Huang Y, Wu J, Wei Y, Lin J, Huang M (2008) Hydrothermal synthesis of K2La2Ti3O10 and photocatalytic splitting of water. J Alloys Compd 456(1–2):364–367
49.
Zurück zum Zitat Kim HG, Hwang DW, Kim J, Kim Y, Lee JS (1999) Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem Commun 1077–1078 Kim HG, Hwang DW, Kim J, Kim Y, Lee JS (1999) Highly donor-doped (110) layered perovskite materials as novel photocatalysts for overall water splitting. Chem Commun 1077–1078
50.
Zurück zum Zitat Ikeda S, Hirao K, Ishino S, Matsumura M, Ohtani B (2006) Preparation of platinized strontium titanate covered with hollow silica and its activity for overall water splitting in a novel phase-boundary photocatalytic system. Catal Today 117(1–3):343–349 Ikeda S, Hirao K, Ishino S, Matsumura M, Ohtani B (2006) Preparation of platinized strontium titanate covered with hollow silica and its activity for overall water splitting in a novel phase-boundary photocatalytic system. Catal Today 117(1–3):343–349
51.
Zurück zum Zitat Yang Y, Lee K, Kado Y, Schmuki P (2012) Nb-doping of TiO2/SrTiO3 nanotubular heterostructures for enhanced photocatalytic water splitting. Electrochem Commun 17:56–59 Yang Y, Lee K, Kado Y, Schmuki P (2012) Nb-doping of TiO2/SrTiO3 nanotubular heterostructures for enhanced photocatalytic water splitting. Electrochem Commun 17:56–59
52.
Zurück zum Zitat Altomare M, Pozzi M, Allieta M, Bettini LG, Selli E (2013) H2 and O2 photocatalytic production on TiO2 nanotube arrays: effect of the anodization time on structural features and photoactivity. Appl Catal Environ 136–137:81–88 Altomare M, Pozzi M, Allieta M, Bettini LG, Selli E (2013) H2 and O2 photocatalytic production on TiO2 nanotube arrays: effect of the anodization time on structural features and photoactivity. Appl Catal Environ 136–137:81–88
53.
Zurück zum Zitat Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2007) Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catal Today 120(2):133–138 Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2007) Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts. Catal Today 120(2):133–138
54.
Zurück zum Zitat Liu J, Liu J, Li Z (2013) Preparation and photocatalytic activity for water splitting of Pt–Na2Ta2O6 nanotube arrays. J Solid State Chem 198:192–196 Liu J, Liu J, Li Z (2013) Preparation and photocatalytic activity for water splitting of Pt–Na2Ta2O6 nanotube arrays. J Solid State Chem 198:192–196
55.
Zurück zum Zitat Chiou Y, Kumar U, Wu JCS (2009) Photocatalytic splitting of water on NiO/InTaO4 catalysts prepared by an innovative sol–gel method. Appl Catal Gen 357(1):73–78 Chiou Y, Kumar U, Wu JCS (2009) Photocatalytic splitting of water on NiO/InTaO4 catalysts prepared by an innovative sol–gel method. Appl Catal Gen 357(1):73–78
56.
Zurück zum Zitat Kato H, Kudo A (2003) Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 78:561–569 Kato H, Kudo A (2003) Photocatalytic water splitting into H2 and O2 over various tantalate photocatalysts. Catal Today 78:561–569
57.
Zurück zum Zitat Zheng C, West A (1991) Compound and solid-solution formation, phase equilibria and Electrical properties in the ceramic system Zr02-La2O3-Ta2O5. J Mat Chem 1(2):163–167 Zheng C, West A (1991) Compound and solid-solution formation, phase equilibria and Electrical properties in the ceramic system Zr02-La2O3-Ta2O5. J Mat Chem 1(2):163–167
58.
Zurück zum Zitat Kudo A, Kato H (2000) Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem Phys Lett 331:373–377 Kudo A, Kato H (2000) Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting. Chem Phys Lett 331:373–377
59.
Zurück zum Zitat Zou Z, Ye J, Arakawa H (2003) Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. Int J Hydrogen Energy 28(6):663–669 Zou Z, Ye J, Arakawa H (2003) Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. Int J Hydrogen Energy 28(6):663–669
60.
Zurück zum Zitat Li Y, Wu J, Huang Y, Huang M, Lin J (2009) Photocatalytic water splitting on new layered perovskite A2.33Sr0.67Nb5O14.335 (A=K, H). Int J Hydrogen Energy 34(19):7927–7933 Li Y, Wu J, Huang Y, Huang M, Lin J (2009) Photocatalytic water splitting on new layered perovskite A2.33Sr0.67Nb5O14.335 (A=K, H). Int J Hydrogen Energy 34(19):7927–7933
61.
Zurück zum Zitat Wei Y, Li J, Huang Y, Huang M, Lin J, Wu J (2009) Photocatalytic water splitting with In-doped H2LaNb2O7 composite oxide semiconductors. Sol Energy Mater Sol Cell 93(8):1176–1181 Wei Y, Li J, Huang Y, Huang M, Lin J, Wu J (2009) Photocatalytic water splitting with In-doped H2LaNb2O7 composite oxide semiconductors. Sol Energy Mater Sol Cell 93(8):1176–1181
62.
Zurück zum Zitat Sayama K, Arakawa H, Domen K (1996) Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A=K, Rb). Catal Today 28(1–2):175–182 Sayama K, Arakawa H, Domen K (1996) Photocatalytic water splitting on nickel intercalated A4TaxNb6-xO17 (A=K, Rb). Catal Today 28(1–2):175–182
63.
Zurück zum Zitat Hameed A, Gondal MA, Yamani ZH (2004) Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun 5(11):715–719 Hameed A, Gondal MA, Yamani ZH (2004) Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun 5(11):715–719
64.
Zurück zum Zitat He X, Boehm RF (2009) Direct solar water splitting cell using water, WO3, Pt, and polymer electrolyte membrane. Energy 34(10):1454–1457 He X, Boehm RF (2009) Direct solar water splitting cell using water, WO3, Pt, and polymer electrolyte membrane. Energy 34(10):1454–1457
65.
Zurück zum Zitat Lai CW, Sreekantan S (2013) Fabrication of WO3 nanostructures by anodization method for visible-light driven water splitting and photodegradation of methyl orange. Mat Sci Semicon Proc 16(2):303–310 Lai CW, Sreekantan S (2013) Fabrication of WO3 nanostructures by anodization method for visible-light driven water splitting and photodegradation of methyl orange. Mat Sci Semicon Proc 16(2):303–310
66.
Zurück zum Zitat Rao PM, Cho IS, Zheng X (2013) Flame synthesis of WO3 nanotubes and nanowires for efficient photoelectrochemical water-splitting. Proc Combust Inst 34(2):2187–2195 Rao PM, Cho IS, Zheng X (2013) Flame synthesis of WO3 nanotubes and nanowires for efficient photoelectrochemical water-splitting. Proc Combust Inst 34(2):2187–2195
67.
Zurück zum Zitat Lai K, Zhu Y, Lu J, Dai Y, Huang B (2013) N- and Mo-doping Bi2WO6 in photocatalytic water splitting. Comput Mat Sci 67:88–92 Lai K, Zhu Y, Lu J, Dai Y, Huang B (2013) N- and Mo-doping Bi2WO6 in photocatalytic water splitting. Comput Mat Sci 67:88–92
68.
Zurück zum Zitat Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612 Ng YH, Iwase A, Kudo A, Amal R (2010) Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett 1:2607–2612
69.
Zurück zum Zitat Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 357–358 Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 357–358
70.
Zurück zum Zitat Ye J, Zou Z, Arakawa H, Oshikiri M, Shimoda M, Matsushita A, Shishido T (2002) Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+, Nb5+, Ta5+). J Photoch Photobio A 148:79–83 Ye J, Zou Z, Arakawa H, Oshikiri M, Shimoda M, Matsushita A, Shishido T (2002) Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+, Nb5+, Ta5+). J Photoch Photobio A 148:79–83
71.
Zurück zum Zitat Lin H, Chen Y, Chen Y (2007) Water splitting reaction on NiO/InVO4 under visible light irradiation. Int J Hydrogen Energy 32(1):86–92 Lin H, Chen Y, Chen Y (2007) Water splitting reaction on NiO/InVO4 under visible light irradiation. Int J Hydrogen Energy 32(1):86–92
72.
Zurück zum Zitat Kadowaki H, Saito N, Nishiyama H, Inoue Y (2007) RuO2-Loaded Sr2+-doped CeO2 with d0 electronic configuration as a new photocatalyst for overall water splitting. Chem Lett 36(3):440–441 Kadowaki H, Saito N, Nishiyama H, Inoue Y (2007) RuO2-Loaded Sr2+-doped CeO2 with d0 electronic configuration as a new photocatalyst for overall water splitting. Chem Lett 36(3):440–441
73.
Zurück zum Zitat Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) Ta3N5 as a novel visible light-driven photocatalyst λ < 600 nm). Chem Lett 31(7):736–737 Hitoki G, Ishikawa A, Takata T, Kondo JN, Hara M, Domen K (2002) Ta3N5 as a novel visible light-driven photocatalyst λ < 600 nm). Chem Lett 31(7):736–737
74.
Zurück zum Zitat Yamasita D, Takata T, Hara M, Kondo JN, Domen K (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ion 172(1–4):591–595 Yamasita D, Takata T, Hara M, Kondo JN, Domen K (2004) Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. Solid State Ion 172(1–4):591–595
75.
Zurück zum Zitat Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 106:6750–6753 Kasahara A, Nukumizu K, Hitoki G, Takata T, Kondo JN, Hara M, Kobayashi H, Domen K (2002) Photoreactions on LaTiO2N under visible light irradiation. J Phys Chem A 106:6750–6753
76.
Zurück zum Zitat Yoshida M, Maeda K, Lu D, Kubota J, Domen K (2013) Lanthanoid oxide layers on rhodium-loaded (Ga1-xZnx)(N1-xOx) photocatalyst as a modifier for overall water splitting under visible-light irradiation. J Phys Chem C 117:14000–14006 Yoshida M, Maeda K, Lu D, Kubota J, Domen K (2013) Lanthanoid oxide layers on rhodium-loaded (Ga1-xZnx)(N1-xOx) photocatalyst as a modifier for overall water splitting under visible-light irradiation. J Phys Chem C 117:14000–14006
77.
Zurück zum Zitat Lee K, Tienes B, Wilker M, Schnitzebaumer K, Dukovic G (2012) (Ga1-xZnx)(N1-xOx) nanocrystals: visible absorbers with tunable composition and absorption spectra. Am Chem Soc Nano Lett 12:3268–3272 Lee K, Tienes B, Wilker M, Schnitzebaumer K, Dukovic G (2012) (Ga1-xZnx)(N1-xOx) nanocrystals: visible absorbers with tunable composition and absorption spectra. Am Chem Soc Nano Lett 12:3268–3272
78.
Zurück zum Zitat Arai N, Saito N, Nishiyama H, Domen K, Kobayashi H, Sato K, Inoue Y (2007) Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting. Catal Today 129(3–4):407–413 Arai N, Saito N, Nishiyama H, Domen K, Kobayashi H, Sato K, Inoue Y (2007) Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting. Catal Today 129(3–4):407–413
79.
Zurück zum Zitat Kato H, Hori M, Konta H, Shimodaira Y, Kudo A (2004) Construction of Z-scheme-type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem Lett 33(10):1348–1349 Kato H, Hori M, Konta H, Shimodaira Y, Kudo A (2004) Construction of Z-scheme-type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem Lett 33(10):1348–1349
80.
Zurück zum Zitat Abe R, Takata T, Sugihara H, Domen K (2005) Photocatalytic overall water splitting under visible light by TaON andWO3 with an IO3-/I- shuttle redox mediator. Chem Commun 3829–3831 Abe R, Takata T, Sugihara H, Domen K (2005) Photocatalytic overall water splitting under visible light by TaON andWO3 with an IO3-/I- shuttle redox mediator. Chem Commun 3829–3831
81.
Zurück zum Zitat Abe R, Sayama K, Sugihara H (2005) Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 −/I−. J Phys Chem B 109:16052–16061 Abe R, Sayama K, Sugihara H (2005) Development of new photocatalytic water splitting into H2 and O2 using two different semiconductor photocatalysts and a shuttle redox mediator IO3 /I. J Phys Chem B 109:16052–16061
82.
Zurück zum Zitat Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K (2008) Two step water splitting into H2 and O2 under visible light by ATaO2N (A=Ca, Sr, Ba) andWO3 with IO3-/I-shuttle redox mediator. Chem Phys Lett 452:120–123 Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K (2008) Two step water splitting into H2 and O2 under visible light by ATaO2N (A=Ca, Sr, Ba) andWO3 with IO3-/I-shuttle redox mediator. Chem Phys Lett 452:120–123
83.
Zurück zum Zitat Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113:17536–17542 Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113:17536–17542
84.
Zurück zum Zitat Abe R, Shinmei K, Hara K, Ohtani B (2009) Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors. Chem Commun 3577–3579 Abe R, Shinmei K, Hara K, Ohtani B (2009) Robust dye-sensitized overall water splitting system with two-step photoexcitation of coumarin dyes and metal oxide semiconductors. Chem Commun 3577–3579
85.
Zurück zum Zitat Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868 Maeda K, Higashi M, Lu D, Abe R, Domen K (2010) Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J Am Chem Soc 132:5858–5868
86.
Zurück zum Zitat Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, Domen K (2010) Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 26:9161–9165 Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, Domen K (2010) Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 26:9161–9165
87.
Zurück zum Zitat Moradour A, Amouyal E, Keller P, Kagan H (1978) Hydrogen production by visible light irradiation of aqueous solutions of Ru(bipy)32+. New J Chem 2(6):547–549 Moradour A, Amouyal E, Keller P, Kagan H (1978) Hydrogen production by visible light irradiation of aqueous solutions of Ru(bipy)32+. New J Chem 2(6):547–549
88.
Zurück zum Zitat Navarro RM, del Valle F, Villoria de la Mano JA, Álvarez-Galván MC, Fierro JLG (2009) Photocatalytic water splitting under visible light: concept and catalysts development. Adv Chem Eng 36:111–143 Navarro RM, del Valle F, Villoria de la Mano JA, Álvarez-Galván MC, Fierro JLG (2009) Photocatalytic water splitting under visible light: concept and catalysts development. Adv Chem Eng 36:111–143
89.
Zurück zum Zitat Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2002) A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J Photoch Photobio A 148(1–3):71–77 Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H (2002) A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis. J Photoch Photobio A 148(1–3):71–77
90.
Zurück zum Zitat Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3 −/I−shuttle redox mediator. Chem Phys Lett 344(3):339–344 Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3 /Ishuttle redox mediator. Chem Phys Lett 344(3):339–344
91.
Zurück zum Zitat Erbs W, Desilvestro J, Borgarello E, Gratzel M (1984) Visible-light-induced O2 generation from aqueous dispersions of WO3. J Phys Chem 88:4001 Erbs W, Desilvestro J, Borgarello E, Gratzel M (1984) Visible-light-induced O2 generation from aqueous dispersions of WO3. J Phys Chem 88:4001
92.
Zurück zum Zitat Sayama K, Yoshida M, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+Fe2+ redox system. Chem Phys Lett 277(4):387–391 Sayama K, Yoshida M, Kusama H, Okabe K, Abe Y, Arakawa H (1997) Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+Fe2+ redox system. Chem Phys Lett 277(4):387–391
93.
Zurück zum Zitat Kato H, Sasaki Y, Iwase A, Kudo A (2007) Role of iron Ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems. Chem Soc Jpn 80(12):2457–2464 Kato H, Sasaki Y, Iwase A, Kudo A (2007) Role of iron Ion electron mediator on photocatalytic overall water splitting under visible light irradiation using Z-scheme systems. Chem Soc Jpn 80(12):2457–2464
94.
Zurück zum Zitat Sasaki Y, Iwase A, Kato H, Kudo A (2008) The effect of cocatalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. J Catal 259:133–137 Sasaki Y, Iwase A, Kato H, Kudo A (2008) The effect of cocatalyst for Z-scheme photocatalysis systems with an Fe3+/Fe2+ electron mediator on overall water splitting under visible light irradiation. J Catal 259:133–137
95.
Zurück zum Zitat Ohno T, Haga D, Fujihara K, Kaizaki K, Matsumura M (1997) Unique effects of iron(III) ions on photocatalytic and photoelectrochemical properties of titanium dioxide. J Phys Chem B 101(33):6415–6419 Ohno T, Haga D, Fujihara K, Kaizaki K, Matsumura M (1997) Unique effects of iron(III) ions on photocatalytic and photoelectrochemical properties of titanium dioxide. J Phys Chem B 101(33):6415–6419
96.
Zurück zum Zitat Konta R, Ishii T, Kato H, Kudo A (2004) Photocatalytic activities of noble metal ion-doped SrTiO3 under visible light irradiation. J Phys Chem B 108:8992–8995 Konta R, Ishii T, Kato H, Kudo A (2004) Photocatalytic activities of noble metal ion-doped SrTiO3 under visible light irradiation. J Phys Chem B 108:8992–8995
97.
Zurück zum Zitat Ishii T, Kato H, Kudo A (2004) H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. J Photoch Photobio A 163(1–2):181–186 Ishii T, Kato H, Kudo A (2004) H2 evolution from an aqueous methanol solution on SrTiO3 photocatalysts codoped with chromium and tantalum ions under visible light irradiation. J Photoch Photobio A 163(1–2):181–186
98.
Zurück zum Zitat Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106(19):5029–5034 Kato H, Kudo A (2002) Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J Phys Chem B 106(19):5029–5034
99.
Zurück zum Zitat Kudo A, Tanaka A, Domen K, Onishi T (1988) The effects of the calcination temperature of SrTiO3 powder on photocatalytic activities. J Catal 111(2):296–301 Kudo A, Tanaka A, Domen K, Onishi T (1988) The effects of the calcination temperature of SrTiO3 powder on photocatalytic activities. J Catal 111(2):296–301
100.
Zurück zum Zitat Darwent JR, Mills A (1982) Photo-oxidation of water sensitized by WO3 powder. J Chem Soc Faraday T 78:359–367 Darwent JR, Mills A (1982) Photo-oxidation of water sensitized by WO3 powder. J Chem Soc Faraday T 78:359–367
101.
Zurück zum Zitat Weaver ER, Berry WM, Bohnson VL, Gordon BD (1920) The ferrosilicon process for the generation of hydrogen, Report No. 40. Annual Report National Advisory Committee for Aeronautics Weaver ER, Berry WM, Bohnson VL, Gordon BD (1920) The ferrosilicon process for the generation of hydrogen, Report No. 40. Annual Report National Advisory Committee for Aeronautics
102.
Zurück zum Zitat Guo J, Chen X (eds) (2011) Solar hydrogen generation: transition metal oxides in water photoelectrolysis. McGraw Hill, New York Guo J, Chen X (eds) (2011) Solar hydrogen generation: transition metal oxides in water photoelectrolysis. McGraw Hill, New York
103.
Zurück zum Zitat Musa A, Al-Saleh M, Loakeimidis ZC, Ouzounidou M, Yentekakis IV, Konsolakis M, Marnellos GE (2014) Hydrogen production by iso-octane steam reforming over Cu catalysts supported on rare earth oxides (REOs). Int J Hydrogen Energy 39(3):1350–1363 Musa A, Al-Saleh M, Loakeimidis ZC, Ouzounidou M, Yentekakis IV, Konsolakis M, Marnellos GE (2014) Hydrogen production by iso-octane steam reforming over Cu catalysts supported on rare earth oxides (REOs). Int J Hydrogen Energy 39(3):1350–1363
104.
Zurück zum Zitat Kumar K, Roy S, Das D (2013) Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresour Technol 145:116–122 Kumar K, Roy S, Das D (2013) Continuous mode of carbon dioxide sequestration by C. sorokiniana and subsequent use of its biomass for hydrogen production by E. cloacae IIT-BT 08. Bioresour Technol 145:116–122
105.
Zurück zum Zitat Sugai Y, Purwasena IA, Sasaki K, Fujiwara K, Hattori Y, Okatsu K (2012) Experimental studies on indigenous hydrocarbon-degrading and hydrogen-producing bacteria in an oilfield for microbial restoration of natural gas deposits with CO2 sequestration. J Nat Gas Sci Eng 5:31–41 Sugai Y, Purwasena IA, Sasaki K, Fujiwara K, Hattori Y, Okatsu K (2012) Experimental studies on indigenous hydrocarbon-degrading and hydrogen-producing bacteria in an oilfield for microbial restoration of natural gas deposits with CO2 sequestration. J Nat Gas Sci Eng 5:31–41
106.
Zurück zum Zitat Huang L, Zhou J, Hsu A, Chen R (2013) Catalytic partial oxidation of n-butanol for hydrogen production over LDH-derived Ni-based catalysts. Int J Hydrogen Energy 38(34):14550–14558 Huang L, Zhou J, Hsu A, Chen R (2013) Catalytic partial oxidation of n-butanol for hydrogen production over LDH-derived Ni-based catalysts. Int J Hydrogen Energy 38(34):14550–14558
107.
Zurück zum Zitat Ge Z, Guo S, Guo L, Cao C, Su X, Jin H (2013) Hydrogen production by non-catalytic partial oxidation of coal in supercritical water: explore the way to complete gasification of lignite and bituminous coal. Int J Hydrogen Energy 38(29):12786–12794 Ge Z, Guo S, Guo L, Cao C, Su X, Jin H (2013) Hydrogen production by non-catalytic partial oxidation of coal in supercritical water: explore the way to complete gasification of lignite and bituminous coal. Int J Hydrogen Energy 38(29):12786–12794
108.
Zurück zum Zitat Bundaleska N, Tsyganov D, Saavedra R, Tatarova E, Dias FM, Ferreira CM (2013) Hydrogen production from methanol reforming in microwave “tornado”-type plasma. Int J Hydrogen Energy 38(22):9145–9157 Bundaleska N, Tsyganov D, Saavedra R, Tatarova E, Dias FM, Ferreira CM (2013) Hydrogen production from methanol reforming in microwave “tornado”-type plasma. Int J Hydrogen Energy 38(22):9145–9157
109.
Zurück zum Zitat Kim HS, Kim YH, Ahn BT, Lee JG, Park CS, Bae KK (2014) Phase separation characteristics of the Bunsen reaction when using HI x solution (HI–I2–H2O) in the sulfur–iodine hydrogen production process. Int J Hydrogen Energy 39(2):692–701 Kim HS, Kim YH, Ahn BT, Lee JG, Park CS, Bae KK (2014) Phase separation characteristics of the Bunsen reaction when using HI x solution (HI–I2–H2O) in the sulfur–iodine hydrogen production process. Int J Hydrogen Energy 39(2):692–701
110.
Zurück zum Zitat Liberatore R, Lanchi M, Caputo G, Felici C, Giaconia A, Sau S, Tarquini P (2012) Hydrogen production by flue gas through sulfur–iodine thermochemical process: economic and energy evaluation. Int J Hydrogen Energy 37(11):8939–8953 Liberatore R, Lanchi M, Caputo G, Felici C, Giaconia A, Sau S, Tarquini P (2012) Hydrogen production by flue gas through sulfur–iodine thermochemical process: economic and energy evaluation. Int J Hydrogen Energy 37(11):8939–8953
111.
Zurück zum Zitat Xing Z, Zong X, Pan J, Wang L (2013) On the engineering part of solar hydrogen production from water splitting: photoreactor design. Chem Eng Soc 104:125–146 Xing Z, Zong X, Pan J, Wang L (2013) On the engineering part of solar hydrogen production from water splitting: photoreactor design. Chem Eng Soc 104:125–146
112.
Zurück zum Zitat Zhang W, Li Y, Wang C, Wang P, Wang Q (2013) Energy recovery during advanced wastewater treatment: Simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis. Water Res 47(3):1480–1490 Zhang W, Li Y, Wang C, Wang P, Wang Q (2013) Energy recovery during advanced wastewater treatment: Simultaneous estrogenic activity removal and hydrogen production through solar photocatalysis. Water Res 47(3):1480–1490
113.
Zurück zum Zitat Yu S, Huang C, Liao C, Wu JCS, Chang S, Chen K (2011) A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting. J Membr Sci 382(1–2):291–299 Yu S, Huang C, Liao C, Wu JCS, Chang S, Chen K (2011) A novel membrane reactor for separating hydrogen and oxygen in photocatalytic water splitting. J Membr Sci 382(1–2):291–299
114.
Zurück zum Zitat Liao C, Huang C, Wu JCS (2012) Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2:490–516 Liao C, Huang C, Wu JCS (2012) Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts 2:490–516
115.
Zurück zum Zitat Liao C, Huang C, Wu JCS (2012) Novel dual-layer photoelectrode prepared by RF magnetron sputtering for photocatalytic water splitting. Int J Hydrogen Energy 37(16):11632–11639 Liao C, Huang C, Wu JCS (2012) Novel dual-layer photoelectrode prepared by RF magnetron sputtering for photocatalytic water splitting. Int J Hydrogen Energy 37(16):11632–11639
116.
Zurück zum Zitat Minggu LJ, Daud WRW, Kassim M (2010) An overview of photocells and photoreactors for photoelectrochemical water splitting. Int J Hydrogen Energy 35(11):5233–5244 Minggu LJ, Daud WRW, Kassim M (2010) An overview of photocells and photoreactors for photoelectrochemical water splitting. Int J Hydrogen Energy 35(11):5233–5244
117.
Zurück zum Zitat Matsumoto H, Mashimo H, Kuroda C (2012) Process analysis of rotary-type solar reactor for hydrogen production systems. Comput Aided Chem Eng 30:1103–1107 Matsumoto H, Mashimo H, Kuroda C (2012) Process analysis of rotary-type solar reactor for hydrogen production systems. Comput Aided Chem Eng 30:1103–1107
118.
Zurück zum Zitat Zhang C, Zhu X, Liao Q, Wang Y, Li J, Ding Y, Wang H (2010) Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. Int J Hydrogen Energy 35(11):5284–5292 Zhang C, Zhu X, Liao Q, Wang Y, Li J, Ding Y, Wang H (2010) Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. Int J Hydrogen Energy 35(11):5284–5292
119.
Zurück zum Zitat Zhang Z, Hossain MF, Takahashi T (2010) Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrogen Energy 35(16):8528–8535 Zhang Z, Hossain MF, Takahashi T (2010) Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrogen Energy 35(16):8528–8535
120.
Zurück zum Zitat Lo C, Huang C, Liao C, Wu JCS (2010) Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. Int J Hydrogen Energy 35(4):1523–1529 Lo C, Huang C, Liao C, Wu JCS (2010) Novel twin reactor for separate evolution of hydrogen and oxygen in photocatalytic water splitting. Int J Hydrogen Energy 35(4):1523–1529
121.
Zurück zum Zitat Jing D, Guo L, Zhao L, Zhang X, Liu H, Li M, Shen S, Liu G, Hu X, Zhang X, Zhang K, Ma L, Guo P (2010) Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int J Hydrogen Energy 35(13):7087–7097 Jing D, Guo L, Zhao L, Zhang X, Liu H, Li M, Shen S, Liu G, Hu X, Zhang X, Zhang K, Ma L, Guo P (2010) Efficient solar hydrogen production by photocatalytic water splitting: from fundamental study to pilot demonstration. Int J Hydrogen Energy 35(13):7087–7097
122.
Zurück zum Zitat Huang C, Liao C, Wu C, Wu JCS (2012) Photocatalytic water splitting to produce hydrogen using multi-junction solar cell with different deposited thin films. Sol Energy Mater Sol Cell 107:322–328 Huang C, Liao C, Wu C, Wu JCS (2012) Photocatalytic water splitting to produce hydrogen using multi-junction solar cell with different deposited thin films. Sol Energy Mater Sol Cell 107:322–328
123.
Zurück zum Zitat Yan W, Zheng CL, Liu YL, Guo LJ (2011) A novel dual-bed photocatalytic water splitting system for hydrogen production. Int J Hydrogen Energy 36(13):7405–7409 Yan W, Zheng CL, Liu YL, Guo LJ (2011) A novel dual-bed photocatalytic water splitting system for hydrogen production. Int J Hydrogen Energy 36(13):7405–7409
124.
Zurück zum Zitat Babu VJ, Kumar MK, Nair AS, Kheng TL, Allakhverdiev SI, Ramakrishna S (2012) Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. Int J Hydrogen Energy 37(10):8897–8904 Babu VJ, Kumar MK, Nair AS, Kheng TL, Allakhverdiev SI, Ramakrishna S (2012) Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. Int J Hydrogen Energy 37(10):8897–8904
125.
Zurück zum Zitat Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H, Fan T (2013) Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting. Int J Hydrogen Energy 47(3):1480–1490 Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H, Fan T (2013) Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting. Int J Hydrogen Energy 47(3):1480–1490
126.
Zurück zum Zitat Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H, Fan T (2013) Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting. Int J Hydrogen Energy 38(20):8244–8253 Ding L, Zhou H, Lou S, Ding J, Zhang D, Zhu H, Fan T (2013) Butterfly wing architecture assisted CdS/Au/TiO2 Z-scheme type photocatalytic water splitting. Int J Hydrogen Energy 38(20):8244–8253
127.
Zurück zum Zitat Bae SW, Ji SM, Hong SJ, Jang JW, Lee JS (2009) Photocatalytic overall water splitting with dual-bed system under visible light irradiation. Int J Hydrogen Energy 34(8):3243–3249 Bae SW, Ji SM, Hong SJ, Jang JW, Lee JS (2009) Photocatalytic overall water splitting with dual-bed system under visible light irradiation. Int J Hydrogen Energy 34(8):3243–3249
128.
Zurück zum Zitat He Y, Yan F, Yu H, Yuan S, Tong Z, Sheng G (2014) Hydrogen production in a light-driven photoelectrochemical cell. Appl Energy 113:164–168 He Y, Yan F, Yu H, Yuan S, Tong Z, Sheng G (2014) Hydrogen production in a light-driven photoelectrochemical cell. Appl Energy 113:164–168
129.
Zurück zum Zitat Li Y, Yu H, Zhang C, Song W, Li G, Shao Z, Yi B (2013) Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrachimica Acta 107:313–319 Li Y, Yu H, Zhang C, Song W, Li G, Shao Z, Yi B (2013) Effect of water and annealing temperature of anodized TiO2 nanotubes on hydrogen production in photoelectrochemical cell. Electrachimica Acta 107:313–319
130.
Zurück zum Zitat Zhu L, Qiang YH, Zhao YL, Gu XQ (2013) Double junction photoelectrochemical solar cells based on Cu2ZnSnS4/Cu2ZnSnSe4 thin film as composite photocathode. Appl Surf Sci 292:55–62 Zhu L, Qiang YH, Zhao YL, Gu XQ (2013) Double junction photoelectrochemical solar cells based on Cu2ZnSnS4/Cu2ZnSnSe4 thin film as composite photocathode. Appl Surf Sci 292:55–62
131.
Zurück zum Zitat Danko DB, Sylenko PM, Shlapak AM, Khyzhun OY, Shcherbakova LG, Ershova OG, Solonin YM (2013) Photoelectrochemical cell for water decomposition with a hybrid photoanode and a metal-hydride cathode. Sol Energy Mater Sol Cell 114:172–178 Danko DB, Sylenko PM, Shlapak AM, Khyzhun OY, Shcherbakova LG, Ershova OG, Solonin YM (2013) Photoelectrochemical cell for water decomposition with a hybrid photoanode and a metal-hydride cathode. Sol Energy Mater Sol Cell 114:172–178
132.
Zurück zum Zitat Wang G, Ling Y, Wang H, Xihong L, Li Y (2014) Chemically modified nanostructures for photoelectrochemical water splitting. J Photochem Photobiol C 19:35–51 Wang G, Ling Y, Wang H, Xihong L, Li Y (2014) Chemically modified nanostructures for photoelectrochemical water splitting. J Photochem Photobiol C 19:35–51
133.
Zurück zum Zitat Li Y, Yu H, Song W, Li G, Yi B, Shao Z (2011) A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int J Hydrogen Energy 36(22):14374–14380 Li Y, Yu H, Song W, Li G, Yi B, Shao Z (2011) A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int J Hydrogen Energy 36(22):14374–14380
134.
Zurück zum Zitat Hsu C, Chen D (2011) Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting. Int J Hydrogen Energy 36(24):15538–15547 Hsu C, Chen D (2011) Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting. Int J Hydrogen Energy 36(24):15538–15547
135.
Zurück zum Zitat Andrade L, Cruz R, Ribeiro HA, Mendes A (2010) Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting. Int J Hydrogen Energy 35(17):8876–8883 Andrade L, Cruz R, Ribeiro HA, Mendes A (2010) Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting. Int J Hydrogen Energy 35(17):8876–8883
136.
Zurück zum Zitat Shin K, Yoo J, Hyeok JP (2013) Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays. J Power Sources 225:263–268 Shin K, Yoo J, Hyeok JP (2013) Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays. J Power Sources 225:263–268
137.
Zurück zum Zitat Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a re-emerging research field. J Hazard Mater 185(2–3):575–590 Lianos P (2011) Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: the concept of the photofuelcell: a review of a re-emerging research field. J Hazard Mater 185(2–3):575–590
138.
Zurück zum Zitat Fujii K, Nakamura S, Sugiyama M, Watanabe K, Bagheri B, Nakano Y (2013) Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int J Hydrogen Energy 38(34):14424–14432 Fujii K, Nakamura S, Sugiyama M, Watanabe K, Bagheri B, Nakano Y (2013) Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int J Hydrogen Energy 38(34):14424–14432
139.
Zurück zum Zitat Zhang H, Huang S, Conibeer G (2012) Study of photo-cathode materials for tandem photoelectrochemical cell for direct water splitting. Energy Procedia 22:10–14 Zhang H, Huang S, Conibeer G (2012) Study of photo-cathode materials for tandem photoelectrochemical cell for direct water splitting. Energy Procedia 22:10–14
140.
Zurück zum Zitat Avachat US, Jahagirdar AH, Dhere NG (2006) Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting. Sol Energy Mater Sol Cell 90(15):2464–2470 Avachat US, Jahagirdar AH, Dhere NG (2006) Multiple bandgap combination of thin film photovoltaic cells and a photoanode for efficient hydrogen and oxygen generation by water splitting. Sol Energy Mater Sol Cell 90(15):2464–2470
141.
Zurück zum Zitat Mishra PR, Shukla PK, Srivastava ON (2007) Study of modular PEC solar cells for photoelectrochemical splitting of water employing nanostructured TiO2 photoelectrodes. Int J Hydrogen Energy 32(12):1680–1685 Mishra PR, Shukla PK, Srivastava ON (2007) Study of modular PEC solar cells for photoelectrochemical splitting of water employing nanostructured TiO2 photoelectrodes. Int J Hydrogen Energy 32(12):1680–1685
142.
Zurück zum Zitat Gibson STL, Kelly NA (2008) Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy 33:5931–5940 Gibson STL, Kelly NA (2008) Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy 33:5931–5940
Metadaten
Titel
Photocatalytic Splitting of Water
verfasst von
Nathan Skillen
Cathy McCullagh
Morgan Adams
Copyright-Jahr
2015
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/698_2014_261