Skip to main content
Erschienen in: Journal of Polymer Research 8/2023

01.08.2023 | Original Paper

Preparation and characterization of morphological and mechanical properties of cellulose cryogel nanofibers reinforced by different polyamide resins

verfasst von: Benyamin Yousefi, Mohammad Dinari, Mehdi Karevan, Mostafa Jamshidian

Erschienen in: Journal of Polymer Research | Ausgabe 8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As environmentally friendly materials, cellulose cryogels are good choices due to their biodegradability and ease of use. However, the most crucial issue concerning cellulose cryogels is their weakness in terms of mechanical properties. In this study, two types of Polyamide-Epichlorohydrine resins, named PAE1 and PAE2, and Polyamide-Glutaraldehide-Epichlorohydrine resin (PGE) were synthesized; they were utilized to reinforce cellulose nanofiber gel (CNFG), and this was followed by the freeze-drying process. The density and porosity of the cryogels were improved and evaluated using mathematical equations. The mechanical behavior of the fabricated specimens was examined to obtain the optimized values of processing time and temperature, as well as the resin weight fraction, which yielded the improvement of compressive modulus, yield strength, and the stress at 60% strain (S60) to 2 (MPa), 50 (kPa), and 1.8 (MPa) respectively. Also, attenuated total reflection (ATR) analysis was conducted to study the effect of resins on the cross-linking of cellulose nanofibers (CNF)s; further, nitrogen adsorption–desorption analysis was performed to investigate the specific surface area and mesopore diameter distribution of cryogels using Brunauer–Emmett–Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Budtova T (2019) Cellulose II aerogels: A review. Cellulose 26(1):81–121CrossRef Budtova T (2019) Cellulose II aerogels: A review. Cellulose 26(1):81–121CrossRef
2.
Zurück zum Zitat Book G (2014) Compendium of chemical terminology. Int Union Pure Appl Chem 528 Book G (2014) Compendium of chemical terminology. Int Union Pure Appl Chem 528
3.
Zurück zum Zitat Aegerter MA, Leventis N, Koebel MM (2011) Advances in sol-gel derived materials and technologies. Aerogels Handbook; Springer New York, NY, USA Aegerter MA, Leventis N, Koebel MM (2011) Advances in sol-gel derived materials and technologies. Aerogels Handbook; Springer New York, NY, USA
4.
Zurück zum Zitat Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: Processing, properties, and applications. J Mater Chem A 5(31):16105–16117CrossRef Lavoine N, Bergström L (2017) Nanocellulose-based foams and aerogels: Processing, properties, and applications. J Mater Chem A 5(31):16105–16117CrossRef
5.
Zurück zum Zitat Shahzamani M, Taheri S, Roghanizad A, Naseri N, Dinari M (2020) Preparation and characterization of hydrogel nanocomposite based on nanocellulose and acrylic acid in the presence of urea. Int J Biological Macromol 147:187–193CrossRef Shahzamani M, Taheri S, Roghanizad A, Naseri N, Dinari M (2020) Preparation and characterization of hydrogel nanocomposite based on nanocellulose and acrylic acid in the presence of urea. Int J Biological Macromol 147:187–193CrossRef
6.
Zurück zum Zitat Buchtová N, Pradille C, Bouvard JL, Budtova T (2019) Mechanical properties of cellulose aerogels and cryogels. Soft Matter 15(39):7901–7908PubMedCrossRef Buchtová N, Pradille C, Bouvard JL, Budtova T (2019) Mechanical properties of cellulose aerogels and cryogels. Soft Matter 15(39):7901–7908PubMedCrossRef
7.
Zurück zum Zitat Sahiner N, Demirci S, Aktas N (2017) Superporous cryogel/conductive composite systems for potential sensor applications. J Polym Res 24:1–11CrossRef Sahiner N, Demirci S, Aktas N (2017) Superporous cryogel/conductive composite systems for potential sensor applications. J Polym Res 24:1–11CrossRef
8.
Zurück zum Zitat Pamfil D, Butnaru E, Vasile C (2016) Poly (vinyl alcohol)/chitosan cryogels as pH responsive ciprofloxacin carriers. J Polym Res 23:1–14CrossRef Pamfil D, Butnaru E, Vasile C (2016) Poly (vinyl alcohol)/chitosan cryogels as pH responsive ciprofloxacin carriers. J Polym Res 23:1–14CrossRef
9.
Zurück zum Zitat Jain A, Bajpai J, Bajpai AK (2017) Structural, morphological and thermal characterization of poly (2-hydroxyethyl methacrylate-co-acrylonitrile)(P (HEMA-co-AN)) Cryogels: evaluation of water sorption potential and cytotoxicity. J Polym Res 24:1–14CrossRef Jain A, Bajpai J, Bajpai AK (2017) Structural, morphological and thermal characterization of poly (2-hydroxyethyl methacrylate-co-acrylonitrile)(P (HEMA-co-AN)) Cryogels: evaluation of water sorption potential and cytotoxicity. J Polym Res 24:1–14CrossRef
10.
Zurück zum Zitat Ma HS, Roberts AP, Prévost JH, Jullien R, Scherer GW (2000) Mechanical structure–property relationship of aerogels. J Non Cryst Solids 277(2–3):127–141CrossRef Ma HS, Roberts AP, Prévost JH, Jullien R, Scherer GW (2000) Mechanical structure–property relationship of aerogels. J Non Cryst Solids 277(2–3):127–141CrossRef
11.
Zurück zum Zitat Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113PubMedCrossRef Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113PubMedCrossRef
12.
Zurück zum Zitat Tan H, Wu B, Li C, Mu C, Li H, Lin W (2015) Collagen cryogel cross-linked by naturally derived dialdehyde carboxymethyl cellulose. Carbohydr Polym 129:17–24PubMedCrossRef Tan H, Wu B, Li C, Mu C, Li H, Lin W (2015) Collagen cryogel cross-linked by naturally derived dialdehyde carboxymethyl cellulose. Carbohydr Polym 129:17–24PubMedCrossRef
13.
Zurück zum Zitat Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. TRENDS Biotechnol 21(10):445–451PubMedCrossRef Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. TRENDS Biotechnol 21(10):445–451PubMedCrossRef
14.
Zurück zum Zitat Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83(4):1766–1774CrossRef Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose–NMMO routes. Carbohydr Polym 83(4):1766–1774CrossRef
15.
Zurück zum Zitat Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824–1832CrossRef Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824–1832CrossRef
16.
Zurück zum Zitat Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599CrossRef Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599CrossRef
17.
Zurück zum Zitat Plappert SF, Nedelec JM, Rennhofer H, Lichtenegger HC, Bernstorff S, Liebner FW (2018) Self-assembly of cellulose in super-cooled ionic liquid under the impact of decelerated antisolvent infusion: an approach toward anisotropic gels and aerogels. Biomacromol 19(11):4411–4422CrossRef Plappert SF, Nedelec JM, Rennhofer H, Lichtenegger HC, Bernstorff S, Liebner FW (2018) Self-assembly of cellulose in super-cooled ionic liquid under the impact of decelerated antisolvent infusion: an approach toward anisotropic gels and aerogels. Biomacromol 19(11):4411–4422CrossRef
18.
Zurück zum Zitat Robitzer M, Di Renzo F, Quignard F (2011) Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels. Microporous Mesoporous Mater 140(1–3):9–16CrossRef Robitzer M, Di Renzo F, Quignard F (2011) Natural materials with high surface area. Physisorption methods for the characterization of the texture and surface of polysaccharide aerogels. Microporous Mesoporous Mater 140(1–3):9–16CrossRef
19.
Zurück zum Zitat Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromol 15(6):2188–2195CrossRef Rudaz C, Courson R, Bonnet L, Calas-Etienne S, Sallée H, Budtova T (2014) Aeropectin: fully biomass-based mechanically strong and thermal superinsulating aerogel. Biomacromol 15(6):2188–2195CrossRef
20.
Zurück zum Zitat Groult S, Budtova T (2018) Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. Carbohydr Polym 196:73–81PubMedCrossRef Groult S, Budtova T (2018) Thermal conductivity/structure correlations in thermal super-insulating pectin aerogels. Carbohydr Polym 196:73–81PubMedCrossRef
21.
Zurück zum Zitat Tang J, Song Y, Zhao F, Spinney S, da Silva BJ, Tam KC (2019) Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydr Polym 208:404–412PubMedCrossRef Tang J, Song Y, Zhao F, Spinney S, da Silva BJ, Tam KC (2019) Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal. Carbohydr Polym 208:404–412PubMedCrossRef
22.
Zurück zum Zitat Tang C, Brodie P, Brunsting M, Tam KC (2020) Carboxylated cellulose cryogel beads via a one-step ester crosslinking of maleic anhydride for copper ions removal. Carbohydr Polym 242:116397PubMedCrossRef Tang C, Brodie P, Brunsting M, Tam KC (2020) Carboxylated cellulose cryogel beads via a one-step ester crosslinking of maleic anhydride for copper ions removal. Carbohydr Polym 242:116397PubMedCrossRef
23.
Zurück zum Zitat Mo L, Pang H, Tan Y, Zhang S, Li J (2019) 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu (II) ions from water. Chem Eng J 378:122157CrossRef Mo L, Pang H, Tan Y, Zhang S, Li J (2019) 3D multi-wall perforated nanocellulose-based polyethylenimine aerogels for ultrahigh efficient and reversible removal of Cu (II) ions from water. Chem Eng J 378:122157CrossRef
24.
Zurück zum Zitat Erlandsson J, Pettersson T, Ingverud T, Granberg H, Larsson PA, Malkoch M et al (2018) On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. J Mater Chem A 6(40):19371–19380CrossRef Erlandsson J, Pettersson T, Ingverud T, Granberg H, Larsson PA, Malkoch M et al (2018) On the mechanism behind freezing-induced chemical crosslinking in ice-templated cellulose nanofibril aerogels. J Mater Chem A 6(40):19371–19380CrossRef
25.
Zurück zum Zitat Liu J, Su D, Yao J, Huang Y, Shao Z, Chen X (2017) Soy protein-based polyethylenimine hydrogel and its high selectivity for copper ion removal in wastewater treatment. J Mater Chem A 5(8):4163–4171CrossRef Liu J, Su D, Yao J, Huang Y, Shao Z, Chen X (2017) Soy protein-based polyethylenimine hydrogel and its high selectivity for copper ion removal in wastewater treatment. J Mater Chem A 5(8):4163–4171CrossRef
26.
Zurück zum Zitat Li Y, Grishkewich N, Liu L, Wang C, Tam KC, Liu S et al (2019) Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chem Eng J 366:531–538CrossRef Li Y, Grishkewich N, Liu L, Wang C, Tam KC, Liu S et al (2019) Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils. Chem Eng J 366:531–538CrossRef
27.
Zurück zum Zitat Li M, Messele SA, Boluk Y, El-Din MG (2019) Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms. Carbohydr Polym 221:231–241PubMedCrossRef Li M, Messele SA, Boluk Y, El-Din MG (2019) Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms. Carbohydr Polym 221:231–241PubMedCrossRef
28.
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
29.
Zurück zum Zitat Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064PubMedCrossRef Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064PubMedCrossRef
30.
Zurück zum Zitat Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci An Int J 16(4):149–158CrossRef Lange J, Wyser Y (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci An Int J 16(4):149–158CrossRef
31.
Zurück zum Zitat Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575CrossRef Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575CrossRef
32.
Zurück zum Zitat Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505CrossRef Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromol 9(6):1493–1505CrossRef
33.
Zurück zum Zitat Sharma S, Deng Y (2016) Dual mechanism of dry strength improvement of cellulose nanofibril films by polyamide-epichlorohydrin resin cross-linking. Ind Eng Chem Res 55(44):11467–11474CrossRef Sharma S, Deng Y (2016) Dual mechanism of dry strength improvement of cellulose nanofibril films by polyamide-epichlorohydrin resin cross-linking. Ind Eng Chem Res 55(44):11467–11474CrossRef
34.
Zurück zum Zitat Zhang W, Zhang Y, Lu C, Deng Y (2012) Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J Mater Chem 22(23):11642–11650CrossRef Zhang W, Zhang Y, Lu C, Deng Y (2012) Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water. J Mater Chem 22(23):11642–11650CrossRef
35.
Zurück zum Zitat Obokata T, Isogai A (2007) The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine-epichlorohydrin (PAE) resin. Colloids Surf A Physicochem Eng Asp 302(1–3):525–531CrossRef Obokata T, Isogai A (2007) The mechanism of wet-strength development of cellulose sheets prepared with polyamideamine-epichlorohydrin (PAE) resin. Colloids Surf A Physicochem Eng Asp 302(1–3):525–531CrossRef
36.
Zurück zum Zitat Zheng T, Li A, Li Z, Hu W, Shao L, Lu L et al (2017) Mechanical reinforcement of a cellulose aerogel with nanocrystalline cellulose as reinforcer. RSC Adv 7(55):34461–34465CrossRef Zheng T, Li A, Li Z, Hu W, Shao L, Lu L et al (2017) Mechanical reinforcement of a cellulose aerogel with nanocrystalline cellulose as reinforcer. RSC Adv 7(55):34461–34465CrossRef
37.
Zurück zum Zitat Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogels. Carbohydr Polym 122:293–300PubMedCrossRef Demilecamps A, Beauger C, Hildenbrand C, Rigacci A, Budtova T (2015) Cellulose–silica aerogels. Carbohydr Polym 122:293–300PubMedCrossRef
38.
Zurück zum Zitat Seantier B, Bendahou D, Bendahou A, Grohens Y, Kaddami H (2016) Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr Polym 138:335–348PubMedCrossRef Seantier B, Bendahou D, Bendahou A, Grohens Y, Kaddami H (2016) Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. Carbohydr Polym 138:335–348PubMedCrossRef
39.
Zurück zum Zitat Gupta P, Singh B, Agrawal AK, Maji PK (2018) Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater Des 158:224–236CrossRef Gupta P, Singh B, Agrawal AK, Maji PK (2018) Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater Des 158:224–236CrossRef
40.
Zurück zum Zitat Revin VV, Pestov NA, Shchankin MV, Mishkin VP, Platonov VI, Uglanov DA (2019) A study of the physical and mechanical properties of aerogels obtained from bacterial cellulose. Biomacromol 20(3):1401–1411CrossRef Revin VV, Pestov NA, Shchankin MV, Mishkin VP, Platonov VI, Uglanov DA (2019) A study of the physical and mechanical properties of aerogels obtained from bacterial cellulose. Biomacromol 20(3):1401–1411CrossRef
41.
Zurück zum Zitat Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non Cryst Solids 125(1–2):67–75CrossRef Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non Cryst Solids 125(1–2):67–75CrossRef
42.
Zurück zum Zitat Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non Cryst Solids 354(40–41):4556–4561CrossRef Alaoui AH, Woignier T, Scherer GW, Phalippou J (2008) Comparison between flexural and uniaxial compression tests to measure the elastic modulus of silica aerogel. J Non Cryst Solids 354(40–41):4556–4561CrossRef
43.
Zurück zum Zitat Weigold L, Reichenauer G (2014) Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J Non Cryst Solids 406:73–78CrossRef Weigold L, Reichenauer G (2014) Correlation between mechanical stiffness and thermal transport along the solid framework of a uniaxially compressed polyurea aerogel. J Non Cryst Solids 406:73–78CrossRef
44.
Zurück zum Zitat Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous mesoporous Mater 183:23–29CrossRef Wong JCH, Kaymak H, Brunner S, Koebel MM (2014) Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Microporous mesoporous Mater 183:23–29CrossRef
45.
Zurück zum Zitat Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22(1):435–447CrossRef Meng Y, Young TM, Liu P, Contescu CI, Huang B, Wang S (2015) Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. Cellulose 22(1):435–447CrossRef
46.
Zurück zum Zitat Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release. Carbohydr Polym 151:392–400PubMedCrossRef Ciolacu D, Rudaz C, Vasilescu M, Budtova T (2016) Physically and chemically cross-linked cellulose cryogels: Structure, properties and application for controlled release. Carbohydr Polym 151:392–400PubMedCrossRef
47.
Zurück zum Zitat Li Z, Yang L, Cao H, Chang Y, Tang K, Cao Z et al (2017) Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application. Carbohydr Polym 175:223–230PubMedCrossRef Li Z, Yang L, Cao H, Chang Y, Tang K, Cao Z et al (2017) Carbon materials derived from chitosan/cellulose cryogel-supported zeolite imidazole frameworks for potential supercapacitor application. Carbohydr Polym 175:223–230PubMedCrossRef
48.
Zurück zum Zitat Nayak AK, Das B (2018) Introduction to polymeric gels. Polym Gels. Elsevier 3–27 Nayak AK, Das B (2018) Introduction to polymeric gels. Polym Gels. Elsevier 3–27
49.
Zurück zum Zitat Xing QQ, Zhao CS, Han WJ (2012) Manufacture and application of PAE as wet strength agent. Adv Mater Res. Trans Tech Publ 1070–1073 Xing QQ, Zhao CS, Han WJ (2012) Manufacture and application of PAE as wet strength agent. Adv Mater Res. Trans Tech Publ 1070–1073
50.
Zurück zum Zitat Keim GI (1967) Cationic water-soluble polyamide-epichlorohydrin resins and method of preparing same. US Patent 3,332,901 Keim GI (1967) Cationic water-soluble polyamide-epichlorohydrin resins and method of preparing same. US Patent 3,332,901
51.
Zurück zum Zitat Horowitz F (1975) Polyamide/formaldehyde/epichlorohydrin wet strength resins and use thereof in production of wet strength paper. US Patent 3,914,155 Horowitz F (1975) Polyamide/formaldehyde/epichlorohydrin wet strength resins and use thereof in production of wet strength paper. US Patent 3,914,155
52.
Zurück zum Zitat Ulazia A, Sáenz J, Ibarra-Berastegi G, González-Rojí SJ, Carreno-Madinabeitia S (2019) Global estimations of wind energy potential considering seasonal air density changes. Energy 187:115938CrossRef Ulazia A, Sáenz J, Ibarra-Berastegi G, González-Rojí SJ, Carreno-Madinabeitia S (2019) Global estimations of wind energy potential considering seasonal air density changes. Energy 187:115938CrossRef
53.
54.
Zurück zum Zitat Xiong J, Li Q, Shi Z, Ye J (2017) Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Res Int 100:858–863PubMedCrossRef Xiong J, Li Q, Shi Z, Ye J (2017) Interactions between wheat starch and cellulose derivatives in short-term retrogradation: Rheology and FTIR study. Food Res Int 100:858–863PubMedCrossRef
56.
Zurück zum Zitat Chen Y, Li S, Li X, Mei C, Zheng JES et al (2021) Liquid transport and real-time dye purification via lotus petiole-inspired long-range-ordered anisotropic cellulose nanofibril aerogels. ACS Nano 15(12):20666–20677PubMedCrossRef Chen Y, Li S, Li X, Mei C, Zheng JES et al (2021) Liquid transport and real-time dye purification via lotus petiole-inspired long-range-ordered anisotropic cellulose nanofibril aerogels. ACS Nano 15(12):20666–20677PubMedCrossRef
57.
Zurück zum Zitat Chen Y, Zhou L, Chen L, Duan G, Mei C, Huang C et al (2019) Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26(11):6653–6667CrossRef Chen Y, Zhou L, Chen L, Duan G, Mei C, Huang C et al (2019) Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport. Cellulose 26(11):6653–6667CrossRef
58.
Zurück zum Zitat Kruer-Zerhusen N, Cantero-Tubilla B, Wilson DB (2018) Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose 25(1):37–48CrossRef Kruer-Zerhusen N, Cantero-Tubilla B, Wilson DB (2018) Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose 25(1):37–48CrossRef
Metadaten
Titel
Preparation and characterization of morphological and mechanical properties of cellulose cryogel nanofibers reinforced by different polyamide resins
verfasst von
Benyamin Yousefi
Mohammad Dinari
Mehdi Karevan
Mostafa Jamshidian
Publikationsdatum
01.08.2023
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 8/2023
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-023-03697-4

Weitere Artikel der Ausgabe 8/2023

Journal of Polymer Research 8/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.