Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 4/2016

27.02.2016 | Original Paper

Preparation and characterization of segmented stacking for thermoelectric power generation

verfasst von: Dawei Liu, Wenbo Peng, Qiming Li, Hu Gao, A. J. Jin

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on the Seebeck effect, thermoelectric generators can convert thermal energy directly into electrical power, which can be applied in waste heat recovery and clean energy generation. In this work, segmented thermoelectric legs were prepared with high-performance thermoelectric materials for the fabrication of multistage thermoelectric generators, which can be utilized in medium temperature energy harvesting. The P-type leg material was Pb0.94Sr0.04Na0.02Te/Bi0.5Sb1.5Te3, and the N-type leg material was Pb0.94Ag0.01La0.05Te/Bi2Te3. The length ratio of the two segments was optimized based on the energy conversion efficiency under different working conditions. The segmented legs were measured with the four-probe method at different temperatures to evaluate their output performance. At a temperature difference of 420 K, the maximum output power density was 0.40 W/cm2 for the P-type leg and 0.32 W/cm2 for the N-type leg.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baranowski LL, Warren EL, Toberer ES (2014) High-temperature high-efficiency solar thermo- electric generators. J Electron Mater 43(6):2348–2355CrossRef Baranowski LL, Warren EL, Toberer ES (2014) High-temperature high-efficiency solar thermo- electric generators. J Electron Mater 43(6):2348–2355CrossRef
Zurück zum Zitat Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461CrossRef Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461CrossRef
Zurück zum Zitat Biswas K, He J, Blum ID et al (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418CrossRef Biswas K, He J, Blum ID et al (2012) High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489:414–418CrossRef
Zurück zum Zitat Cook BA, Chan TE, Dezsi G et al (2014) High-performance three-stage cascade thermo- electric devices with 20 % efficiency. J Electron Mater 44(6):1936–1942CrossRef Cook BA, Chan TE, Dezsi G et al (2014) High-performance three-stage cascade thermo- electric devices with 20 % efficiency. J Electron Mater 44(6):1936–1942CrossRef
Zurück zum Zitat Crane DT, Kossakovski D, Bell LE (2009) Modeling the building blocks of a 10 % efficient segmented thermoelectric power generator. J Electron Mater 38:1382–1386CrossRef Crane DT, Kossakovski D, Bell LE (2009) Modeling the building blocks of a 10 % efficient segmented thermoelectric power generator. J Electron Mater 38:1382–1386CrossRef
Zurück zum Zitat D’angelo J J, Case ED, Matchanov N et al (2011) Electrical, thermal, and mechanical characterization of novel segmented-leg thermoelectric modules. J Electron Mater 40:2051–2062CrossRef D’angelo J J, Case ED, Matchanov N et al (2011) Electrical, thermal, and mechanical characterization of novel segmented-leg thermoelectric modules. J Electron Mater 40:2051–2062CrossRef
Zurück zum Zitat Disalvo FJ (1999) Thermoelectric cooling and power generation. Science 285(5428):703–706CrossRef Disalvo FJ (1999) Thermoelectric cooling and power generation. Science 285(5428):703–706CrossRef
Zurück zum Zitat Glaser JA (2014) Green money laundering. Clean Technol Environ Policy 16:675–680CrossRef Glaser JA (2014) Green money laundering. Clean Technol Environ Policy 16:675–680CrossRef
Zurück zum Zitat Hsu KF, Loo S, Guo F et al (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821CrossRef Hsu KF, Loo S, Guo F et al (2004) Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit. Science 303:818–821CrossRef
Zurück zum Zitat Hu XK, Jood P, Ohta M, Kunii M et al (2015) Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ Sci. doi:10.1039/c5ee02979a Hu XK, Jood P, Ohta M, Kunii M et al (2015) Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ Sci. doi:10.​1039/​c5ee02979a
Zurück zum Zitat Liu D, Li Q, Peng W, Zhu L, Gao H, Meng Q, Jin AJ (2015a) Developing instrumentation to characterize thermoelectric generator modules. Rev Sci Instrum 86:1–6 Liu D, Li Q, Peng W, Zhu L, Gao H, Meng Q, Jin AJ (2015a) Developing instrumentation to characterize thermoelectric generator modules. Rev Sci Instrum 86:1–6
Zurück zum Zitat Liu WS, Jie Q, Kim HS, Ren ZF (2015b) Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater 87:357–376CrossRef Liu WS, Jie Q, Kim HS, Ren ZF (2015b) Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Mater 87:357–376CrossRef
Zurück zum Zitat Moffat R (1997) Notes on using thermocouples. Electron Cool 3:1 Moffat R (1997) Notes on using thermocouples. Electron Cool 3:1
Zurück zum Zitat Mohamed S, Hamed EG, Saber H (2003) High efficiency segmented thermoelectric unicouple for operation between 973 and 300 K. Energy Convers Manag 44:1069–1088CrossRef Mohamed S, Hamed EG, Saber H (2003) High efficiency segmented thermoelectric unicouple for operation between 973 and 300 K. Energy Convers Manag 44:1069–1088CrossRef
Zurück zum Zitat Muller E, Drasarl C, Schilz J, Kaysser WA (2003) Functionally graded materials for sensor and energy applications. Mater Sci Eng A 362:17–39CrossRef Muller E, Drasarl C, Schilz J, Kaysser WA (2003) Functionally graded materials for sensor and energy applications. Mater Sci Eng A 362:17–39CrossRef
Zurück zum Zitat Nolas GS, Sharp J, Goldsmid HJ (2011) Thermoelectrics: basic principles and new materials developments. Springer, London Nolas GS, Sharp J, Goldsmid HJ (2011) Thermoelectrics: basic principles and new materials developments. Springer, London
Zurück zum Zitat Park K, Lee GW (2011) Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process. Nanoscale Res Lett 6:1–5 Park K, Lee GW (2011) Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process. Nanoscale Res Lett 6:1–5
Zurück zum Zitat Snyder GJ (2004) Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl Phys Lett 84:2436–2438CrossRef Snyder GJ (2004) Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl Phys Lett 84:2436–2438CrossRef
Zurück zum Zitat Thomson W (1851) On a mechanical theory of thermoelectric currents. In: Proceedings of the Royal society of Edinburgh, pp 91–98 Thomson W (1851) On a mechanical theory of thermoelectric currents. In: Proceedings of the Royal society of Edinburgh, pp 91–98
Zurück zum Zitat Tian H, Jiang N, Jia Q, Sun X, Shu G, Liang X (2015) Comparison of segmented and traditional thermoelectric generator for waste heat recovery of diesel engine. Energy Proc 75:590–596CrossRef Tian H, Jiang N, Jia Q, Sun X, Shu G, Liang X (2015) Comparison of segmented and traditional thermoelectric generator for waste heat recovery of diesel engine. Energy Proc 75:590–596CrossRef
Zurück zum Zitat Tritt TM (2008) Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res 41:433–448CrossRef Tritt TM (2008) Thermoelectric phenomena, materials, and applications. Annu Rev Mater Res 41:433–448CrossRef
Zurück zum Zitat Tritt TM, Böttner H, Chen L (2008) Thermoelectrics: direct solar thermal energy conversion. MRS Bull 33:366–368CrossRef Tritt TM, Böttner H, Chen L (2008) Thermoelectrics: direct solar thermal energy conversion. MRS Bull 33:366–368CrossRef
Zurück zum Zitat Ursell TS, Snyder GJ (2002) Compatibility of segmented thermoelectric generators. In: 21st international conference on ‘Thermoelectronics’, pp 412–417 Ursell TS, Snyder GJ (2002) Compatibility of segmented thermoelectric generators. In: 21st international conference on ‘Thermoelectronics’, pp 412–417
Zurück zum Zitat Villar A, Arribas JJ, Parrondo J (2012) Waste-to-energy technologies in continuous process industries. Clean Technol Environ Policy 14:29–39CrossRef Villar A, Arribas JJ, Parrondo J (2012) Waste-to-energy technologies in continuous process industries. Clean Technol Environ Policy 14:29–39CrossRef
Zurück zum Zitat Wojciechowski KT, Zybala R, Leszczynski J et al. (2012) Performance characterization of high-efficiency segmented Bi2Te3/CoSb3 unicouples for thermo- electric generators. In: 9th European conference on thermoelectric, pp 667–470 Wojciechowski KT, Zybala R, Leszczynski J et al. (2012) Performance characterization of high-efficiency segmented Bi2Te3/CoSb3 unicouples for thermo- electric generators. In: 9th European conference on thermoelectric, pp 667–470
Zurück zum Zitat Yoon S, Cho J-Y, Koo H, Bae S-H, Ahn S, Kim GR, Kim J-S (2013) Thermoelectric properties of n-Type Bi2Te3/PbSe0.5Te0.5 segmented thermoelectric material. J Electron Mater 43(2):414–418CrossRef Yoon S, Cho J-Y, Koo H, Bae S-H, Ahn S, Kim GR, Kim J-S (2013) Thermoelectric properties of n-Type Bi2Te3/PbSe0.5Te0.5 segmented thermoelectric material. J Electron Mater 43(2):414–418CrossRef
Zurück zum Zitat Zhao D, Tian C, Tang S et al (2010) Fabrication of a CoSb3-based thermoelectric module. Mater Sci Semicond Process 13:221–224CrossRef Zhao D, Tian C, Tang S et al (2010) Fabrication of a CoSb3-based thermoelectric module. Mater Sci Semicond Process 13:221–224CrossRef
Zurück zum Zitat Zhao LD, Lo SH, Zhang Y et al (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–377CrossRef Zhao LD, Lo SH, Zhang Y et al (2014) Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508:373–377CrossRef
Zurück zum Zitat Zhou H-Y, Zhao W-Y, Liu G, Cheng H, Zhang Q-J (2012) Design and optimization of gradient interface of p-Type Ba0.3In0.3FeCo3Sb12/Bi0.48Sb1.52Te3 thermo- electric materials. J Electron Mater 42(7):1436–1442CrossRef Zhou H-Y, Zhao W-Y, Liu G, Cheng H, Zhang Q-J (2012) Design and optimization of gradient interface of p-Type Ba0.3In0.3FeCo3Sb12/Bi0.48Sb1.52Te3 thermo- electric materials. J Electron Mater 42(7):1436–1442CrossRef
Metadaten
Titel
Preparation and characterization of segmented stacking for thermoelectric power generation
verfasst von
Dawei Liu
Wenbo Peng
Qiming Li
Hu Gao
A. J. Jin
Publikationsdatum
27.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 4/2016
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-015-1088-5

Weitere Artikel der Ausgabe 4/2016

Clean Technologies and Environmental Policy 4/2016 Zur Ausgabe