Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 7/2014

01.10.2014 | Original paper

Process data reconciliation in the presence of non-uniform measurement errors

verfasst von: Marco Vocciante, Valter Mantelli, Nicoletta Aloi, Vincenzo G. Dovì, Andrea P. Reverberi

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of flow rates reconciliation was to adjust measured values and estimate unmeasured streams so as to balance both measured and unmeasured values, identify gross errors and detect leaks and losses. Thus, data reconciliation plays a key role in the monitoring of industrial plants for the early detection of critical events which might cause environmental and economic damages, and it is,therefore, an essential component of any clean technology process. Consequently, any method that improves the accuracy of the reconstructed data by considering more realistic assumptions on the statistical nature of the data can add considerably to the overall reliability of the process. The reconciliation procedure is statistical in nature and requires adequate information on the structure of the random errors of the flow rates measured. A frequent assumption is the homoscedasticity and the independence of the errors affecting different streams. This assumption leads to efficient algorithms based on advanced linear algebra decompositions, such as QR or Singular Value Decomposition, but it frequently leads to biased estimates, especially when the values of flow rates vary over two or more orders of magnitude. The goal of this article was to show the importance of considering general heteroscedasticity when reconciling flow rates. Errors are supposed to be normally distributed according to \(\varepsilon_{\text{i}} \cong N(0,\,\sigma_{0} L_{\text{i}}^{ 2\eta } )\), where \(L_{\text{i}}\) is the measurement of the ith flow rate and \(\theta\) = \(\left\{ {\theta |\sigma_{0} ,\eta } \right\}\) is a set of two parameters to be estimated along with the adjustments to the measured flow rates. Therefore, the overall variance–covariance is characterised by 3 parameters \(\sigma_{0} ,\eta\) and the correlation factor among measurement errors ρ. The algorithm here proposed is based on conditional optimality, and it carries out the whole optimisation in terms of the parameters \(\theta\) only, the unknown adjustments being expressed at each iteration as functions of \(\theta\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Mutairi EM, El-Halwagi MM (2010) Environmental-impact reduction through simultaneous design, scheduling, and operation. Clean Tech Environ Policy 12:537–545CrossRef Al-Mutairi EM, El-Halwagi MM (2010) Environmental-impact reduction through simultaneous design, scheduling, and operation. Clean Tech Environ Policy 12:537–545CrossRef
Zurück zum Zitat Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRef Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, PhiladelphiaCrossRef
Zurück zum Zitat Bagatin R, Klemeš JJ, Reverberi AP, Huisingh D (2014) Conservation and improvements in water resource management: a global challenge. J Clean Prod 77:1–9CrossRef Bagatin R, Klemeš JJ, Reverberi AP, Huisingh D (2014) Conservation and improvements in water resource management: a global challenge. J Clean Prod 77:1–9CrossRef
Zurück zum Zitat Bard Y (1974) Nonlinear parameter estimation. Academic Press, Orlando Bard Y (1974) Nonlinear parameter estimation. Academic Press, Orlando
Zurück zum Zitat Bhatt NP, Mitna A, Narasimhan S (2007) Multivariate calibration of non-replicated measurements for heteroscedastic errors. Chemom Intell Lab 85:70–81CrossRef Bhatt NP, Mitna A, Narasimhan S (2007) Multivariate calibration of non-replicated measurements for heteroscedastic errors. Chemom Intell Lab 85:70–81CrossRef
Zurück zum Zitat Choi YJ, Han SK, Chung ST, Row KH (2004) Chromatographic separation of bupivacaine racemate by mathematical model with competitive Langmuir isotherm. Korean J Chem Eng 21:829–835CrossRef Choi YJ, Han SK, Chung ST, Row KH (2004) Chromatographic separation of bupivacaine racemate by mathematical model with competitive Langmuir isotherm. Korean J Chem Eng 21:829–835CrossRef
Zurück zum Zitat Crowe CM (1986) Reconciliation of process flow rates by matrix projection. Part II: the nonlinear case. AIChE J 32:616–623CrossRef Crowe CM (1986) Reconciliation of process flow rates by matrix projection. Part II: the nonlinear case. AIChE J 32:616–623CrossRef
Zurück zum Zitat Crowe CM, Garcia Campos YA, Hrymak A (1983) Reconciliation of process flow rates by matrix projection Part I: Linear case. AIChE J 29:881–888CrossRef Crowe CM, Garcia Campos YA, Hrymak A (1983) Reconciliation of process flow rates by matrix projection Part I: Linear case. AIChE J 29:881–888CrossRef
Zurück zum Zitat De Rademaeker E, Suter G, Pasman HJ, Fabiano B (2014) A review of the past, present and future of the European loss prevention and safety promotion in the process industries. Process Saf Environ. doi:10.1016/j.psep.2014.03.007 De Rademaeker E, Suter G, Pasman HJ, Fabiano B (2014) A review of the past, present and future of the European loss prevention and safety promotion in the process industries. Process Saf Environ. doi:10.​1016/​j.​psep.​2014.​03.​007
Zurück zum Zitat Dovì VG, Reverberi AP, Maga L (1997) Reconciliation of process measurements when data are subject to detection limits. Chem Eng Sci 52:3047–3050CrossRef Dovì VG, Reverberi AP, Maga L (1997) Reconciliation of process measurements when data are subject to detection limits. Chem Eng Sci 52:3047–3050CrossRef
Zurück zum Zitat Fabiano B, Reverberi AP, Del Borghi A, Dovì VG (2012) Biodiesel production via transesterification: process safety insights from kinetic modeling. Theor Found Chem Eng 46:673–680CrossRef Fabiano B, Reverberi AP, Del Borghi A, Dovì VG (2012) Biodiesel production via transesterification: process safety insights from kinetic modeling. Theor Found Chem Eng 46:673–680CrossRef
Zurück zum Zitat Fabiano B, Currò F, Reverberi AP, Palazzi E (2014) Coal dust emissions: from environmental control to risk minimization by underground transport. An applicative case-study. Process Saf Environ 92:150–159 Fabiano B, Currò F, Reverberi AP, Palazzi E (2014) Coal dust emissions: from environmental control to risk minimization by underground transport. An applicative case-study. Process Saf Environ 92:150–159
Zurück zum Zitat Farsang B, Gomori Z, Horvath G, Nagy G, Nemeth S, Abonyi J (2013) Simultaneous validation of online analyzers and process simulators by process data reconciliation. Chem Eng Trans 32:1303 Farsang B, Gomori Z, Horvath G, Nagy G, Nemeth S, Abonyi J (2013) Simultaneous validation of online analyzers and process simulators by process data reconciliation. Chem Eng Trans 32:1303
Zurück zum Zitat Kong M, Chen B, He X (2002) Wavelet-based regulation of dynamic data reconciliation. Ind Eng Chem Res 41:3405–3412CrossRef Kong M, Chen B, He X (2002) Wavelet-based regulation of dynamic data reconciliation. Ind Eng Chem Res 41:3405–3412CrossRef
Zurück zum Zitat Mah RSH, Tamhane AC (1982) Detection of gross errors in process data. AIChE J 28:828–830CrossRef Mah RSH, Tamhane AC (1982) Detection of gross errors in process data. AIChE J 28:828–830CrossRef
Zurück zum Zitat Manenti F, Grottoli MG, Pierucci S (2011) Online data reconciliation with poor-redundancy systems. Ind Eng Chem Res 50:14105–14114CrossRef Manenti F, Grottoli MG, Pierucci S (2011) Online data reconciliation with poor-redundancy systems. Ind Eng Chem Res 50:14105–14114CrossRef
Zurück zum Zitat Murtagh BA, Sargent RWH (1970) Computational experience with quadratically convergent minimization methods. Comput J 13:185–194CrossRef Murtagh BA, Sargent RWH (1970) Computational experience with quadratically convergent minimization methods. Comput J 13:185–194CrossRef
Zurück zum Zitat Pascariu V, Avadanei O, Gasner P, Stoica I, Reverberi AP, Mitoseriu L (2013) Preparation and characterization of PbTiO3-epoxy resin compositionally graded thick films. Phase Transit 86:715–725CrossRef Pascariu V, Avadanei O, Gasner P, Stoica I, Reverberi AP, Mitoseriu L (2013) Preparation and characterization of PbTiO3-epoxy resin compositionally graded thick films. Phase Transit 86:715–725CrossRef
Zurück zum Zitat Reverberi AP, Cerrato C, Dovì VG (2011) Reconciliation of flow rate measurements in the presence of solid particles. Ind Eng Chem Res 50:5248–5252CrossRef Reverberi AP, Cerrato C, Dovì VG (2011) Reconciliation of flow rate measurements in the presence of solid particles. Ind Eng Chem Res 50:5248–5252CrossRef
Zurück zum Zitat Tagliabue M, Reverberi AP, Bagatin R (2014) Boron removal from water: needs, challenges and perspectives. J Clean Prod 77:56–64CrossRef Tagliabue M, Reverberi AP, Bagatin R (2014) Boron removal from water: needs, challenges and perspectives. J Clean Prod 77:56–64CrossRef
Zurück zum Zitat Tao L-Y, Zhang M, Li Z-D (2013) Study on the product quality control in small batch trial process. Adv Mat Res 694–697:3507–3511CrossRef Tao L-Y, Zhang M, Li Z-D (2013) Study on the product quality control in small batch trial process. Adv Mat Res 694–697:3507–3511CrossRef
Metadaten
Titel
Process data reconciliation in the presence of non-uniform measurement errors
verfasst von
Marco Vocciante
Valter Mantelli
Nicoletta Aloi
Vincenzo G. Dovì
Andrea P. Reverberi
Publikationsdatum
01.10.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 7/2014
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-014-0824-6

Weitere Artikel der Ausgabe 7/2014

Clean Technologies and Environmental Policy 7/2014 Zur Ausgabe