Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 10/2020

24.10.2020 | Original Paper

Real-time optimal spatiotemporal sensor placement for monitoring air pollutants

verfasst von: Rajib Mukherjee, Urmila M. Diwekar, Naresh Kumar

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Air pollution exposure assessment involves monitoring of pollutant species concentrations in the atmosphere along with their health impact assessment on the population. Often air pollutants are monitored via stationary monitoring stations. Due to the cost of sensors and land for the installation of the sensors within an urban area as well as maintenance of a monitoring network, sensors can only be installed at a limited number of locations. The sparse spatial coverage of immobile monitors can lead to errors in estimating the actual exposure of pollutants. One approach to address these limitations is dynamic sensing, a new monitoring technique that adjusts the locations of portable sensors in real time to measure the dynamic changes in air quality. The key challenge in dynamic sensing is to develop algorithms to identify the optimal sensor locations in real time in the face of inherent uncertainties in emissions estimates and the fate and transport of air pollutants. In this paper, we present an algorithmic framework to address the challenge of sensor placement in real time, given those uncertainties. Uncertainty in the system includes location and amount of pollutants as well as meteorology leading to a stochastic optimization problem. We use the novel better optimization of nonlinear uncertain systems (BONUS) algorithm to solve these problems. Fisher information (FI) is used as the objective of the optimization. We demonstrate the capability of our novel algorithm using a case study in Atlanta, Georgia. Our real-time sensor placement algorithm allows, for the first time, determination of the optimal location of sensors under the spatial–temporal variability of pollutants, which cannot be accomplished by a stationary monitoring station. We present the dynamic locations of sensors for observing concentrations of pollutants as well as for observing the impacts of these pollutants on populations.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baratto F, Diwekar UM, Manca D (2005) Impacts assessment and tradeoffs of fuel cell based auxiliary power units: part II. Environmental and health impacts, LCA, and multi-objective optimization. J Power Sources 139(1–2):214–222.CrossRef Baratto F, Diwekar UM, Manca D (2005) Impacts assessment and tradeoffs of fuel cell based auxiliary power units: part II. Environmental and health impacts, LCA, and multi-objective optimization. J Power Sources 139(1–2):214–222.CrossRef
Zurück zum Zitat Berry JW, Fleischer L, Hart WE, Phillips CA, Watson JP (2005) Sensor placement in municipal water networks. J Water Resources Plan Manag 131(3):237–243CrossRef Berry JW, Fleischer L, Hart WE, Phillips CA, Watson JP (2005) Sensor placement in municipal water networks. J Water Resources Plan Manag 131(3):237–243CrossRef
Zurück zum Zitat Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, NewYork Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, NewYork
Zurück zum Zitat Brantley HL, Hagler GS, Herndon SC, Massoli P, Bergin MH, Russell AG (2019) Characterization of spatial air pollution patterns near a large Railyard area in Atlanta, Georgia. Int J Environ Res Public Health 16(4):535CrossRef Brantley HL, Hagler GS, Herndon SC, Massoli P, Bergin MH, Russell AG (2019) Characterization of spatial air pollution patterns near a large Railyard area in Atlanta, Georgia. Int J Environ Res Public Health 16(4):535CrossRef
Zurück zum Zitat Charnes A, Cooper WW (1959) Chance-constrained programming. Manage Sci 6(1):73–79CrossRef Charnes A, Cooper WW (1959) Chance-constrained programming. Manage Sci 6(1):73–79CrossRef
Zurück zum Zitat Dantzig GB, Infanger G (1991) Large scale stochastic linear programs–importance sampling and Bender decomposition. In: Brezinski C, Kulisch U (eds) Computational and applied mathematics, pp 111–120 Dantzig GB, Infanger G (1991) Large scale stochastic linear programs–importance sampling and Bender decomposition. In: Brezinski C, Kulisch U (eds) Computational and applied mathematics, pp 111–120
Zurück zum Zitat Diwekar U, Ulas S (2007) Sampling techniques, Kirk-Othmer Encyclopedia of chemical technology, Online Edition 26:998 Diwekar U, Ulas S (2007) Sampling techniques, Kirk-Othmer Encyclopedia of chemical technology, Online Edition 26:998
Zurück zum Zitat Diwekar UM, David A (2015) BONUS algorithm for large scale Stochastic nonlinear programing problems. Springer, Heidelberg Diwekar UM, David A (2015) BONUS algorithm for large scale Stochastic nonlinear programing problems. Springer, Heidelberg
Zurück zum Zitat Diwekar UM, Kalagnanam JR (1997) Efficient sampling technique for optimization under uncertainty. AIChE J 43(2):440–447CrossRef Diwekar UM, Kalagnanam JR (1997) Efficient sampling technique for optimization under uncertainty. AIChE J 43(2):440–447CrossRef
Zurück zum Zitat Diwekar UM (2008) Introduction to applied optimization. Springer, New YorkCrossRef Diwekar UM (2008) Introduction to applied optimization. Springer, New YorkCrossRef
Zurück zum Zitat Diwekar UM, Mukherjee R (2017) Optimizing spatiotemporal sensors placement for nutrient monitoring: a stochastic optimization framework. Clean Technol Environ Policy 19(9):2305–2316CrossRef Diwekar UM, Mukherjee R (2017) Optimizing spatiotemporal sensors placement for nutrient monitoring: a stochastic optimization framework. Clean Technol Environ Policy 19(9):2305–2316CrossRef
Zurück zum Zitat Graessley S, Suler P, Kliestik T, Kicova E (2019) Industrial big data analytics for cognitive internet of things: wireless sensor networks, smart computing algorithms, and machine learning techniques. Anal Metaphys 18:23–29CrossRef Graessley S, Suler P, Kliestik T, Kicova E (2019) Industrial big data analytics for cognitive internet of things: wireless sensor networks, smart computing algorithms, and machine learning techniques. Anal Metaphys 18:23–29CrossRef
Zurück zum Zitat Higle JL, Sen S (1991) Stochastic decomposition: an algorithm for two-stage linear programs with recourse. Math Oper Res 16(3):650–669CrossRef Higle JL, Sen S (1991) Stochastic decomposition: an algorithm for two-stage linear programs with recourse. Math Oper Res 16(3):650–669CrossRef
Zurück zum Zitat Jácome G, Valarezo C, Yoo C (2018) Assessment of water quality monitoring for the optimal sensor placement in lake Yahuarcocha using pattern recognition techniques and geographical information systems. Environ Monit Assessment 190(4):259CrossRef Jácome G, Valarezo C, Yoo C (2018) Assessment of water quality monitoring for the optimal sensor placement in lake Yahuarcocha using pattern recognition techniques and geographical information systems. Environ Monit Assessment 190(4):259CrossRef
Zurück zum Zitat Kadri A, Yaacoub E, Mushtaha M, Abu-Dayya A (2013) Wireless sensor network for real-time air pollution monitoring. In: 2013 1st International conference on communications, signal processing, and their applications (ICCSPA), IEEE, pp 1–5. Kadri A, Yaacoub E, Mushtaha M, Abu-Dayya A (2013) Wireless sensor network for real-time air pollution monitoring. In: 2013 1st International conference on communications, signal processing, and their applications (ICCSPA), IEEE, pp 1–5.
Zurück zum Zitat Kaivonen S, Ngai ECH (2020) Real-time air pollution monitoring with sensors on city bus. Digital Commun Netw 6(1):23–30CrossRef Kaivonen S, Ngai ECH (2020) Real-time air pollution monitoring with sensors on city bus. Digital Commun Netw 6(1):23–30CrossRef
Zurück zum Zitat Lee AJ, Diwekar UM (2012) Optimal sensor placement in integrated gasification combined cycle power systems. Appl Energy 99:255–264CrossRef Lee AJ, Diwekar UM (2012) Optimal sensor placement in integrated gasification combined cycle power systems. Appl Energy 99:255–264CrossRef
Zurück zum Zitat Ma Y, Richards M, Ghanem M, Guo Y, Hassard J (2008) Air pollution monitoring and mining based on sensor grid in London. Sensors 8(6):3601–3623CrossRef Ma Y, Richards M, Ghanem M, Guo Y, Hassard J (2008) Air pollution monitoring and mining based on sensor grid in London. Sensors 8(6):3601–3623CrossRef
Zurück zum Zitat Marjovi A, Arfire A, Martinoli A (2015) High resolution air pollution maps in urban environments using mobile sensor networks. In: 2015 International conference on distributed computing in sensor systems. IEEE, pp 11–20. Marjovi A, Arfire A, Martinoli A (2015) High resolution air pollution maps in urban environments using mobile sensor networks. In: 2015 International conference on distributed computing in sensor systems. IEEE, pp 11–20.
Zurück zum Zitat Mihăiţă AS, Dupont L, Chery O, Camargo M, Cai C (2019) Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling. J Cleaner Production 221:398–418CrossRef Mihăiţă AS, Dupont L, Chery O, Camargo M, Cai C (2019) Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling. J Cleaner Production 221:398–418CrossRef
Zurück zum Zitat Manfreda S, McCabe MF, Miller PE, Lucas R, Pajuelo Madrigal V, Mallinis G, Dor EB, Helman D, Estes L, Ciraolo G, Müllerová J, Tauro F, Isabel De Lima M, De Lima JLMP, Maltese A, Frances F, Caylor K, Kohv M, Perks M, Ruiz-Pérez G, Su Z, Vico G, Toth B, Müllerová J (2018) On the use of unmanned aerial systems for environmental monitoring. Remote sensing 10(4):641CrossRef Manfreda S, McCabe MF, Miller PE, Lucas R, Pajuelo Madrigal V, Mallinis G, Dor EB, Helman D, Estes L, Ciraolo G, Müllerová J, Tauro F, Isabel De Lima M, De Lima JLMP, Maltese A, Frances F, Caylor K, Kohv M, Perks M, Ruiz-Pérez G, Su Z, Vico G, Toth B, Müllerová J (2018) On the use of unmanned aerial systems for environmental monitoring. Remote sensing 10(4):641CrossRef
Zurück zum Zitat Milward R, Popescu GH, Michalikova KF, Musova Z, Machova V (2019) Sensing, smart, and sustainable technologies in Industry 4.0: Cyber-physical networks, machine data capturing systems, and digitized mass production. Econ Manage Financial Markets 14(3):37–43.CrossRef Milward R, Popescu GH, Michalikova KF, Musova Z, Machova V (2019) Sensing, smart, and sustainable technologies in Industry 4.0: Cyber-physical networks, machine data capturing systems, and digitized mass production. Econ Manage Financial Markets 14(3):37–43.CrossRef
Zurück zum Zitat Moltchanov S, Levy I, Etzion Y, Lerner U, Broday DM, Fishbain B (2015) On the feasibility of measuring urban air pollution by wireless distributed sensor networks. Sci Total Environ 502:537–547CrossRef Moltchanov S, Levy I, Etzion Y, Lerner U, Broday DM, Fishbain B (2015) On the feasibility of measuring urban air pollution by wireless distributed sensor networks. Sci Total Environ 502:537–547CrossRef
Zurück zum Zitat Mukherjee R, Diwekar UM (2016) Comparison of Monte Carlo and quasi-Monte Carlo technique in structure and relaxing dynamics of polymer in dilute solution. Comput Chem Eng 84:28–35CrossRef Mukherjee R, Diwekar UM (2016) Comparison of Monte Carlo and quasi-Monte Carlo technique in structure and relaxing dynamics of polymer in dilute solution. Comput Chem Eng 84:28–35CrossRef
Zurück zum Zitat Mukherjee R, Diwekar UM, Vaseashta A (2017) Optimal sensor placement with mitigation strategy for water network systems under uncertainty. Comput Chem Eng 103:91–102CrossRef Mukherjee R, Diwekar UM, Vaseashta A (2017) Optimal sensor placement with mitigation strategy for water network systems under uncertainty. Comput Chem Eng 103:91–102CrossRef
Zurück zum Zitat Mulholland JA, Butler AJ, Wilkinson JG, Russell AG, Tolbert PE (1998) Temporal and spatial distributions of ozone in Atlanta: regulatory and epidemiologic implications. J Air Waste Manage Assoc 48(5):418–426CrossRef Mulholland JA, Butler AJ, Wilkinson JG, Russell AG, Tolbert PE (1998) Temporal and spatial distributions of ozone in Atlanta: regulatory and epidemiologic implications. J Air Waste Manage Assoc 48(5):418–426CrossRef
Zurück zum Zitat Nguyen LV, Hu G, Spanos CJ (2018) Efficient sensor deployments for spatio-temporal environmental monitoring. IEEE Trans Syst Man Cybern Syst Nguyen LV, Hu G, Spanos CJ (2018) Efficient sensor deployments for spatio-temporal environmental monitoring. IEEE Trans Syst Man Cybern Syst
Zurück zum Zitat Reis S, Seto E, Northcross A, Quinn NW, Convertino M, Jones RL, Maier HR, Schlink U, Steinle S, Vieno M, Wimberly MC (2015) Integrating modelling and smart sensors for environmental and human health. Environ Model Softw 74:238–246CrossRef Reis S, Seto E, Northcross A, Quinn NW, Convertino M, Jones RL, Maier HR, Schlink U, Steinle S, Vieno M, Wimberly MC (2015) Integrating modelling and smart sensors for environmental and human health. Environ Model Softw 74:238–246CrossRef
Zurück zum Zitat Richards M, Ghanem M, Osmond M, Guo Y, Hassard J (2006) Grid-based analysis of air pollution data. Ecol Modell 194(1–3):274–286CrossRef Richards M, Ghanem M, Osmond M, Guo Y, Hassard J (2006) Grid-based analysis of air pollution data. Ecol Modell 194(1–3):274–286CrossRef
Zurück zum Zitat Rico-Ramirez V, Reyes-Mendoza MA, Quintana-Hernandez PA, Ortiz-Cruz JA, Hernandez-Castro S, Diwekar UM (2010) Fisher information on the performance of dynamic systems. Ind Eng Chem Res 49(4):1812–1821CrossRef Rico-Ramirez V, Reyes-Mendoza MA, Quintana-Hernandez PA, Ortiz-Cruz JA, Hernandez-Castro S, Diwekar UM (2010) Fisher information on the performance of dynamic systems. Ind Eng Chem Res 49(4):1812–1821CrossRef
Zurück zum Zitat Rockafellar RT, Wets RJB (1991) Scenarios and policy aggregation in optimization under uncertainty. Math Oper Res 16(1):119–147CrossRef Rockafellar RT, Wets RJB (1991) Scenarios and policy aggregation in optimization under uncertainty. Math Oper Res 16(1):119–147CrossRef
Zurück zum Zitat Ruszczyński A (1986) A regularized decomposition method for minimizing a sum of polyhedral functions. Math Program 35(3):309–333CrossRef Ruszczyński A (1986) A regularized decomposition method for minimizing a sum of polyhedral functions. Math Program 35(3):309–333CrossRef
Zurück zum Zitat Sahin KH, Diwekar U, M. (2004) Better Optimization of Nonlinear Uncertain Systems (BONUS): a new algorithm for stochastic programming using reweighting through Kernel density estimation. Ann Oper Res 132:47–68CrossRef Sahin KH, Diwekar U, M. (2004) Better Optimization of Nonlinear Uncertain Systems (BONUS): a new algorithm for stochastic programming using reweighting through Kernel density estimation. Ann Oper Res 132:47–68CrossRef
Zurück zum Zitat Shastri Y, Diwekar UM (2006) Sensor placement in water networks: a stochastic programming approach. J Water Resources Plan Manage 132(3):192–203CrossRef Shastri Y, Diwekar UM (2006) Sensor placement in water networks: a stochastic programming approach. J Water Resources Plan Manage 132(3):192–203CrossRef
Zurück zum Zitat Sun C, Yu Y, Li VO, Lam JC (2019) Multi-type sensor placements in Gaussian spatial fields for environmental monitoring. Sensors 19(1):189CrossRef Sun C, Yu Y, Li VO, Lam JC (2019) Multi-type sensor placements in Gaussian spatial fields for environmental monitoring. Sensors 19(1):189CrossRef
Zurück zum Zitat Tmušić G, Manfreda S, Aasen H, James MR, Gonçalves G, Ben-Dor E, Anna B, Maria P, Jose Juan A, János M, Ruodan Z, Kasper J, Yoann M, Pedroso I, de Corine DL, Sorin H, Matthew M, Zhuang R (2020) Current practices in UAS-based environmental monitoring. Remote Sensing 12(6):1001CrossRef Tmušić G, Manfreda S, Aasen H, James MR, Gonçalves G, Ben-Dor E, Anna B, Maria P, Jose Juan A, János M, Ruodan Z, Kasper J, Yoann M, Pedroso I, de Corine DL, Sorin H, Matthew M, Zhuang R (2020) Current practices in UAS-based environmental monitoring. Remote Sensing 12(6):1001CrossRef
Zurück zum Zitat Vochozka M, Rowland Z, Šuleř P (2019). The specifics of valuating a business with a limited lifespan. Ad Alta: J Interdisciplinary Res 9(2). Vochozka M, Rowland Z, Šuleř P (2019). The specifics of valuating a business with a limited lifespan. Ad Alta: J Interdisciplinary Res 9(2).
Metadaten
Titel
Real-time optimal spatiotemporal sensor placement for monitoring air pollutants
verfasst von
Rajib Mukherjee
Urmila M. Diwekar
Naresh Kumar
Publikationsdatum
24.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 10/2020
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-020-01959-z

Weitere Artikel der Ausgabe 10/2020

Clean Technologies and Environmental Policy 10/2020 Zur Ausgabe