Skip to main content
Erschienen in: 3D Research 3/2018

01.09.2018 | 3DR Express

Symmetric Cryptosystem Based on Chaos Structured Phase Masks and Equal Modulus Decomposition Using Fractional Fourier Transform

verfasst von: R. Girija, Hukum Singh

Erschienen in: 3D Research | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chaotic structured phase masks (CSPM), equal modulus decomposition (EMD) and fractional Fourier transform are potentially proposed to design the effective symmetric cryptosystem. The encryption and decryption process of our proposed system is completely established by using double random phase encoding (DRPE) in fractional Fourier domain. Frequently, random phase mask (RPM) are used routinely as secret key in most of the DRPE schemes. Nevertheless, RPM are not optimally robust against many attacks. Henceforth, this method utilises chaotic structured phase masks in the place of random phase masks (RPM). CSPM are assembled with the help of logistic map, Fresnel zone plates (FZP) and radial Hilbert mask (RHM) functions. To design an effectual trap door one-way function, equal modulus decomposition (EMD) is performed for encryption and decryption procedure of our cryptosystem. Various asymmetric cryptosystem was designed for EMD; but constructing EMD effectively in symmetric cryptosystem based on chaos structured phase masks and fractional Fourier transform is considered as a novel work and it is employed. As a result, the proposed symmetric cryptosystem attains high robust and withstand many attacks. Numerical simulations are exhibited in order to validate our system and support the fact that our EMD and CSPM based cryptosystem is extremely suitable for securing images.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding”. Optics Letters, 20(7), 767–769.CrossRef Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding”. Optics Letters, 20(7), 767–769.CrossRef
2.
Zurück zum Zitat Javidi, B. (Ed.). (2005). Optical and digital techniques for information security. Berlin: Springer. Javidi, B. (Ed.). (2005). Optical and digital techniques for information security. Berlin: Springer.
3.
Zurück zum Zitat Singh, K., Unnikrishnan, G., & Nishchal, N. K. (2002). Photorefractive optical processing for data security. Proceedings of SPIE., 4803, 205–219.CrossRef Singh, K., Unnikrishnan, G., & Nishchal, N. K. (2002). Photorefractive optical processing for data security. Proceedings of SPIE., 4803, 205–219.CrossRef
4.
Zurück zum Zitat Javidi, B. et al. (2016). Roadmap on optical security. Journal of Optics, 18, 083001.CrossRef Javidi, B. et al. (2016). Roadmap on optical security. Journal of Optics, 18, 083001.CrossRef
5.
Zurück zum Zitat Alfalou, A., & Brosseau, C. (2009). Optical image compression and encryption methods. Advances in Optics and Photonics, 1(3), 589–636.CrossRef Alfalou, A., & Brosseau, C. (2009). Optical image compression and encryption methods. Advances in Optics and Photonics, 1(3), 589–636.CrossRef
6.
Zurück zum Zitat Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S., & Javidi, B. (2009). Optical techniques for information security. Proceedings of the IEEE, 97(6), 1128–1148.CrossRef Matoba, O., Nomura, T., Perez-Cabre, E., Millan, M. S., & Javidi, B. (2009). Optical techniques for information security. Proceedings of the IEEE, 97(6), 1128–1148.CrossRef
7.
Zurück zum Zitat Glückstad, J., & Palima, D. (2009). Generalized phase contrast. Netherlands: Springer.CrossRef Glückstad, J., & Palima, D. (2009). Generalized phase contrast. Netherlands: Springer.CrossRef
8.
Zurück zum Zitat Garcia-Varela, M. S. M., & Perez-Cabre, E. (2011). Optical data encryption, 33. In G. Cristobal, P. Schelkens, & H. Thienpont (Eds.), Optical and digital image processing: Fundamentals and applications (pp. 739–767). New York: Wiley.CrossRef Garcia-Varela, M. S. M., & Perez-Cabre, E. (2011). Optical data encryption, 33. In G. Cristobal, P. Schelkens, & H. Thienpont (Eds.), Optical and digital image processing: Fundamentals and applications (pp. 739–767). New York: Wiley.CrossRef
10.
Zurück zum Zitat Unnikrishnan, G., Joseph, J., & Singh, K. (2000). Optical encryption by double-random phase encoding in the fractional Fourier domain. Optics Letters, 25(12), 887–889.CrossRef Unnikrishnan, G., Joseph, J., & Singh, K. (2000). Optical encryption by double-random phase encoding in the fractional Fourier domain. Optics Letters, 25(12), 887–889.CrossRef
11.
Zurück zum Zitat Hennelly, B. M., & Sheridan, J. T. (2003). Image encryption and the fractional Fourier transform. Optik-International Journal for light and Electron optics, 114(6), 251–265.CrossRef Hennelly, B. M., & Sheridan, J. T. (2003). Image encryption and the fractional Fourier transform. Optik-International Journal for light and Electron optics, 114(6), 251–265.CrossRef
12.
Zurück zum Zitat Nishchal, N. K., Joseph, J., & Singh, K. (2003). Fully phase encryption using fractional Fourier transform. Optical Engeering, 42(6), 1583–1589.CrossRef Nishchal, N. K., Joseph, J., & Singh, K. (2003). Fully phase encryption using fractional Fourier transform. Optical Engeering, 42(6), 1583–1589.CrossRef
13.
Zurück zum Zitat Liu, Z., Xu, L., Lin, C., Dai, J., & Liu, S. (2011). Image encryption scheme by using iterative random phase encoding in gyrator transform domains. Optics and Lasers in Engineering, 49(4), 542–546.CrossRef Liu, Z., Xu, L., Lin, C., Dai, J., & Liu, S. (2011). Image encryption scheme by using iterative random phase encoding in gyrator transform domains. Optics and Lasers in Engineering, 49(4), 542–546.CrossRef
14.
Zurück zum Zitat Situ, G., & Zhang, J. (2004). Double random-phase encoding in the Fresnel domain. Optics Letters, 29(14), 1584–1586.CrossRef Situ, G., & Zhang, J. (2004). Double random-phase encoding in the Fresnel domain. Optics Letters, 29(14), 1584–1586.CrossRef
15.
Zurück zum Zitat Zhou, N., Wang, Y., Gong, L., Chen, X., & Yang, Y. (2012). Novel color image encryption algorithm based on the reality preserving fractional Mellin transform. Optics & Laser Technology, 44(7), 2270–2281.CrossRef Zhou, N., Wang, Y., Gong, L., Chen, X., & Yang, Y. (2012). Novel color image encryption algorithm based on the reality preserving fractional Mellin transform. Optics & Laser Technology, 44(7), 2270–2281.CrossRef
16.
Zurück zum Zitat Vashisth, S., Singh, H., Yadav, A. K., & Singh, K. (2014). Image encryption using fractional Mellin transform, structured phase filters, and phase retrieval. Optik-International Journal for Light and Electron Optics, 125(18), 5309–5315.CrossRef Vashisth, S., Singh, H., Yadav, A. K., & Singh, K. (2014). Image encryption using fractional Mellin transform, structured phase filters, and phase retrieval. Optik-International Journal for Light and Electron Optics, 125(18), 5309–5315.CrossRef
17.
Zurück zum Zitat Abuturab, M. R. (2017). Securing multiple information using chaotic spiral phase encoding with simultaneous interference and superposition methods. Optics and Lasers in Engineering, 98, 1–16.CrossRef Abuturab, M. R. (2017). Securing multiple information using chaotic spiral phase encoding with simultaneous interference and superposition methods. Optics and Lasers in Engineering, 98, 1–16.CrossRef
18.
Zurück zum Zitat Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2014). Fully phase image encryption using double random-structured phase masks in gyrator domain. Applied Optics, 53(28), 6472–6481.CrossRef Singh, H., Yadav, A. K., Vashisth, S., & Singh, K. (2014). Fully phase image encryption using double random-structured phase masks in gyrator domain. Applied Optics, 53(28), 6472–6481.CrossRef
19.
Zurück zum Zitat Barrera, J. F., Henao, R., & Torroba, R. (2005). Optical encryption method using Toroidal zone plates. Optics Communication, 248, 35–40.CrossRef Barrera, J. F., Henao, R., & Torroba, R. (2005). Optical encryption method using Toroidal zone plates. Optics Communication, 248, 35–40.CrossRef
20.
Zurück zum Zitat Cai, J., Shen, X., Lei, M., Lin, C., & Dou, S. (2015). Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Letters, 40(4), 475–478.CrossRef Cai, J., Shen, X., Lei, M., Lin, C., & Dou, S. (2015). Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Letters, 40(4), 475–478.CrossRef
21.
Zurück zum Zitat Carnicer, A., Montes-Usategui, M., Arcos, S., & Juvells, I. (2005). Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Optics Letters, 30(13), 1644–1646.CrossRef Carnicer, A., Montes-Usategui, M., Arcos, S., & Juvells, I. (2005). Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Optics Letters, 30(13), 1644–1646.CrossRef
22.
Zurück zum Zitat Peng, X., Zhang, P., Wei, H., & Yu, B. (2006). Known-plaintext attack on optical encryption based on double random phase keys. Optics Letters, 31(8), 1044–1046.CrossRef Peng, X., Zhang, P., Wei, H., & Yu, B. (2006). Known-plaintext attack on optical encryption based on double random phase keys. Optics Letters, 31(8), 1044–1046.CrossRef
23.
Zurück zum Zitat Peng, X., Wei, H., & Zhang, P. (2006). Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Optics Letters, 31(22), 3261–3263.CrossRef Peng, X., Wei, H., & Zhang, P. (2006). Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Optics Letters, 31(22), 3261–3263.CrossRef
24.
Zurück zum Zitat Gopinathan, U., Monaghan, D. S., Naughton, T. J., & Sheridan, J. T. (2006). A known-plaintext heuristic attack on the Fourier plane encryption algorithm. Optics Express, 14(8), 3181–3186.CrossRef Gopinathan, U., Monaghan, D. S., Naughton, T. J., & Sheridan, J. T. (2006). A known-plaintext heuristic attack on the Fourier plane encryption algorithm. Optics Express, 14(8), 3181–3186.CrossRef
25.
Zurück zum Zitat Wang, X., & Zhao, D. (2011). Security enhancement of a phase-truncation based image encryption algorithm. Applied Optics, 50(36), 6645–6651.CrossRef Wang, X., & Zhao, D. (2011). Security enhancement of a phase-truncation based image encryption algorithm. Applied Optics, 50(36), 6645–6651.CrossRef
26.
Zurück zum Zitat Ding, X., Deng, X., Song, K., & Chen, G. (2013). Security improvement for asymmetric cryptosystem based on spherical wave illumination. Applied optics, 52(3), 467–473.CrossRef Ding, X., Deng, X., Song, K., & Chen, G. (2013). Security improvement for asymmetric cryptosystem based on spherical wave illumination. Applied optics, 52(3), 467–473.CrossRef
27.
Zurück zum Zitat Wang, X., & Zhao, D. (2012). A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Communication, 285(6), 1078–1081.CrossRef Wang, X., & Zhao, D. (2012). A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Optics Communication, 285(6), 1078–1081.CrossRef
28.
Zurück zum Zitat Liu, H., & Wang, X. (2010). Color image encryption based on one-time keys and robust chaotic maps. Computers & Mathematics with Applications, 59(10), 3320–3327.MathSciNetCrossRef Liu, H., & Wang, X. (2010). Color image encryption based on one-time keys and robust chaotic maps. Computers & Mathematics with Applications, 59(10), 3320–3327.MathSciNetCrossRef
29.
Zurück zum Zitat Wang, X. Y., Yang, L., Liu, L. R., & Kadir, A. (2010). A chaotic image encryption algorithm based on perceptron model. Nonlinear Dynamics, 62(3), 615–621.MathSciNetCrossRef Wang, X. Y., Yang, L., Liu, L. R., & Kadir, A. (2010). A chaotic image encryption algorithm based on perceptron model. Nonlinear Dynamics, 62(3), 615–621.MathSciNetCrossRef
30.
Zurück zum Zitat Liu, H., & Wang, X. (2011). Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Optics Communications, 284(16–17), 3895–3903.CrossRef Liu, H., & Wang, X. (2011). Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Optics Communications, 284(16–17), 3895–3903.CrossRef
31.
Zurück zum Zitat Liu, H., & Wang, X. (2012). Image encryption using DNA complementary rule and chaotic maps. Applied Soft Computing, 12(5), 1457–1466.CrossRef Liu, H., & Wang, X. (2012). Image encryption using DNA complementary rule and chaotic maps. Applied Soft Computing, 12(5), 1457–1466.CrossRef
32.
Zurück zum Zitat Wang, X. Y., Zhang, Y. Q., & Bao, X. M. (2015). A novel chaotic image encryption scheme using DNA sequence operations. Optics and Lasers in Engineering, 73, 53–61.CrossRef Wang, X. Y., Zhang, Y. Q., & Bao, X. M. (2015). A novel chaotic image encryption scheme using DNA sequence operations. Optics and Lasers in Engineering, 73, 53–61.CrossRef
33.
Zurück zum Zitat Wang, X., Liu, L., & Zhang, Y. (2015). A novel chaotic block image encryption algorithm based on dynamic random growth technique. Optics and Lasers in Engineering, 66, 10–18.CrossRef Wang, X., Liu, L., & Zhang, Y. (2015). A novel chaotic block image encryption algorithm based on dynamic random growth technique. Optics and Lasers in Engineering, 66, 10–18.CrossRef
34.
Zurück zum Zitat Zhang, Y. Q., & Wang, X. Y. (2015). A new image encryption algorithm based on non-adjacent coupled map lattices. Applied Soft Computing, 26, 10–20.CrossRef Zhang, Y. Q., & Wang, X. Y. (2015). A new image encryption algorithm based on non-adjacent coupled map lattices. Applied Soft Computing, 26, 10–20.CrossRef
35.
Zurück zum Zitat Yadav A.K., Vashisth S., Singh H., Singh K. (2015) Optical cryptography and watermarking using some fractional canonical transforms, and structured masks. In V. Lakshminarayanan & I. Bhattacharya (Eds.), Advances in Optical Science and Engineering (Vol. 166). Springer Proceedings in Physics. Springer. Yadav A.K., Vashisth S., Singh H., Singh K. (2015) Optical cryptography and watermarking using some fractional canonical transforms, and structured masks. In V. Lakshminarayanan & I. Bhattacharya (Eds.), Advances in Optical Science and Engineering (Vol. 166). Springer Proceedings in Physics. Springer.
36.
Zurück zum Zitat Sui, L., Duan, K., Liang, J., & Hei, X. (2014). Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps. Optics Express, 22(9), 10605–10621.CrossRef Sui, L., Duan, K., Liang, J., & Hei, X. (2014). Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps. Optics Express, 22(9), 10605–10621.CrossRef
37.
Zurück zum Zitat Vilardy, J. M., Jimenez, C. J., & Perez, R. (2017). Image encryption using the Gyrator transform and random phase masks generated by using chaos. In Journal of Physics: Conference Series (Vol. 850, No. 1, p. 012012). IOP Publishing. Vilardy, J. M., Jimenez, C. J., & Perez, R. (2017). Image encryption using the Gyrator transform and random phase masks generated by using chaos. In Journal of Physics: Conference Series (Vol. 850, No. 1, p. 012012). IOP Publishing.
38.
Zurück zum Zitat Liansheng, S., Bei, Z., Xiaojuan, N., & Ailing, T. (2016). Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain. Optics Express, 24(1), 499–515.CrossRef Liansheng, S., Bei, Z., Xiaojuan, N., & Ailing, T. (2016). Optical multiple-image encryption based on the chaotic structured phase masks under the illumination of a vortex beam in the gyrator domain. Optics Express, 24(1), 499–515.CrossRef
39.
Zurück zum Zitat Cai, J., Shen, X., & Lin, C. (2016). Security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Communication, 359, 26–30.CrossRef Cai, J., Shen, X., & Lin, C. (2016). Security-enhanced asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Optics Communication, 359, 26–30.CrossRef
40.
Zurück zum Zitat Wang, Y., Quan, C., & Tay, C. J. (2016). New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Applied Optics, 55(4), 679–686.CrossRef Wang, Y., Quan, C., & Tay, C. J. (2016). New method of attack and security enhancement on an asymmetric cryptosystem based on equal modulus decomposition. Applied Optics, 55(4), 679–686.CrossRef
41.
Zurück zum Zitat Kumar, R., Bhaduri, B., & Nishchal, N. K. (2017). Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition. Journal of Optics, 20(1), 015701.CrossRef Kumar, R., Bhaduri, B., & Nishchal, N. K. (2017). Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition. Journal of Optics, 20(1), 015701.CrossRef
42.
Zurück zum Zitat Fatima, A., Mehra, I., & Nishchal, N. K. (2016). Optical image encryption using equal modulus decomposition and multiple diffractive imaging. Journal of Optics, 18(8), 085701.CrossRef Fatima, A., Mehra, I., & Nishchal, N. K. (2016). Optical image encryption using equal modulus decomposition and multiple diffractive imaging. Journal of Optics, 18(8), 085701.CrossRef
43.
Zurück zum Zitat Chen, H., Tanougast, C., Liu, Z., & Sieler, L. (2017). Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform domains. Optics and Lasers in Engineering, 93, 1–8.CrossRef Chen, H., Tanougast, C., Liu, Z., & Sieler, L. (2017). Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform domains. Optics and Lasers in Engineering, 93, 1–8.CrossRef
44.
Zurück zum Zitat Cai, J., & Shen, X. (2017). Modified optical asymmetric image cryptosystem based on coherent superposition and equal modulus decomposition. Optics & Laser Technology, 95, 105–112.CrossRef Cai, J., & Shen, X. (2017). Modified optical asymmetric image cryptosystem based on coherent superposition and equal modulus decomposition. Optics & Laser Technology, 95, 105–112.CrossRef
45.
Zurück zum Zitat Unnikrishnan, G., & Singh, K. (2000). Double random fractional Fourier domain encoding for optical security. Optical Engineering, 39(11), 2853–2860.CrossRef Unnikrishnan, G., & Singh, K. (2000). Double random fractional Fourier domain encoding for optical security. Optical Engineering, 39(11), 2853–2860.CrossRef
46.
Zurück zum Zitat Garcia, J., Mas, D., & Dorsch, R. G. (1996). Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. Applied Optics, 35(35), 7013–7018.CrossRef Garcia, J., Mas, D., & Dorsch, R. G. (1996). Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. Applied Optics, 35(35), 7013–7018.CrossRef
47.
Zurück zum Zitat Barfungpa, S. P., & Abuturab, M. R. (2016). Asymmetric cryptosystem using coherent superposition and equal modulus decomposition of fractional Fourier spectrum. Optical and Quantum Electronics, 48(11), 520.CrossRef Barfungpa, S. P., & Abuturab, M. R. (2016). Asymmetric cryptosystem using coherent superposition and equal modulus decomposition of fractional Fourier spectrum. Optical and Quantum Electronics, 48(11), 520.CrossRef
48.
Zurück zum Zitat Kumar, R., Bhaduri, B., & Quan, C. (2017). Asymmetric optical image encryption using Kolmogorov phase screens and equal modulus decomposition. Optical Engineering, 56(11), 113109.CrossRef Kumar, R., Bhaduri, B., & Quan, C. (2017). Asymmetric optical image encryption using Kolmogorov phase screens and equal modulus decomposition. Optical Engineering, 56(11), 113109.CrossRef
49.
Zurück zum Zitat Khurana, M., & Singh, H. (2017). An asymmetric image encryption based on phase truncated hybrid transform. 3D Research, 8(3), 28.CrossRef Khurana, M., & Singh, H. (2017). An asymmetric image encryption based on phase truncated hybrid transform. 3D Research, 8(3), 28.CrossRef
50.
Zurück zum Zitat Zamrani, W., Ahouzi, E., Lizana, A., Campos, J., & Yzuel, M. J. (2016). Optical image encryption technique based on deterministic phase masks. Optical Engineering, 55(10), 103108.CrossRef Zamrani, W., Ahouzi, E., Lizana, A., Campos, J., & Yzuel, M. J. (2016). Optical image encryption technique based on deterministic phase masks. Optical Engineering55(10), 103108.CrossRef
51.
Zurück zum Zitat Girija, R., & Singh, H. (2018). A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition. Optical and Quantum Electronics, 50(5), 210.CrossRef Girija, R., & Singh, H. (2018). A cryptosystem based on deterministic phase masks and fractional Fourier transform deploying singular value decomposition. Optical and Quantum Electronics50(5), 210.CrossRef
52.
Zurück zum Zitat Girija, R., & Singh, H. (2018). Design of a novel pseudo random generator based on Walsh Hadamard transform and Bi S-boxes. Procedia Computer Science, 132, 795–804.CrossRef Girija, R., & Singh, H. (2018). Design of a novel pseudo random generator based on Walsh Hadamard transform and Bi S-boxes. Procedia Computer Science, 132, 795–804.CrossRef
53.
Zurück zum Zitat Zhang, Y. Q., & Wang, X. Y. (2014). A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Information Sciences, 273, 329–351.CrossRef Zhang, Y. Q., & Wang, X. Y. (2014). A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Information Sciences, 273, 329–351.CrossRef
54.
Zurück zum Zitat Singh, H. (2016). Cryptosystem for securing image encryption using structured phase masks in Fresnel wavelet transform domain. 3D Research, 7(34), 1–18. Singh, H. (2016). Cryptosystem for securing image encryption using structured phase masks in Fresnel wavelet transform domain. 3D Research, 7(34), 1–18.
55.
Zurück zum Zitat Li, Shujun, Li, Chengqing, & Lo, Kwok-Tung. (2008). Cryptanalysis of an image scrambling scheme without bandwidth expansion. IEEE Transactions on Circuits and Systems for Video Technology, 18(3), 338–349.CrossRef Li, Shujun, Li, Chengqing, & Lo, Kwok-Tung. (2008). Cryptanalysis of an image scrambling scheme without bandwidth expansion. IEEE Transactions on Circuits and Systems for Video Technology, 18(3), 338–349.CrossRef
56.
Zurück zum Zitat Wang, X., Teng, L., & Qin, X. (2012). A novel colour image encryption algorithm based on chaos. Signal Processing, 92(4), 1101–1108.MathSciNetCrossRef Wang, X., Teng, L., & Qin, X. (2012). A novel colour image encryption algorithm based on chaos. Signal Processing, 92(4), 1101–1108.MathSciNetCrossRef
57.
Zurück zum Zitat Girija, R., & Singh, H. (2018). Enhancing security of double random phase encoding based on random S-Box. 3D Research, 9, 15(1-20). Girija, R., & Singh, H. (2018). Enhancing security of double random phase encoding based on random S-Box. 3D Research, 9, 15(1-20).
58.
Zurück zum Zitat Yadav, P. L., & Singh, H. (2018). Optical double image hiding in the fractional Hartley transform using structured phase filter and Arnold transform. 3D Research, 9(20), 1–20. Yadav, P. L., & Singh, H. (2018). Optical double image hiding in the fractional Hartley transform using structured phase filter and Arnold transform. 3D Research, 9(20), 1–20.
Metadaten
Titel
Symmetric Cryptosystem Based on Chaos Structured Phase Masks and Equal Modulus Decomposition Using Fractional Fourier Transform
verfasst von
R. Girija
Hukum Singh
Publikationsdatum
01.09.2018
Verlag
3D Display Research Center
Erschienen in
3D Research / Ausgabe 3/2018
Elektronische ISSN: 2092-6731
DOI
https://doi.org/10.1007/s13319-018-0192-9

Weitere Artikel der Ausgabe 3/2018

3D Research 3/2018 Zur Ausgabe

Premium Partner