Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

Synthetic Biology as Late-Modern Technology

Inquiring into the Rhetoric and Reality of a New Technoscientific Wave

verfasst von : Jan C. Schmidt

Erschienen in: Synthetic Biology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aim of this paper is to contribute to a prospective science and technology assessment (ProTA) of synthetic biology in order to enable an early societal shaping of this emerging wave of technoscience. To accomplish this goal, a philosophical approach towards the technoscientific core of synthetic biology—provided by philosophy of science and philosophy of technology—will be taken. The thesis is that if there is any differentia specifica giving substance to the umbrella term “synthetic biology”, it is the idea(l) of harnessing self-organization for engineering purposes. To underline that we are likely experiencing an epochal break in the ontology of technoscientific systems, this new type of technology is called “late-modern technology." I start by analyzing the three most common paradigms and visions of synthetic biology (Sect. 2). Then I argue that one particular paradigm deserves more attention because it underlies the others: the paradigm of self-organization (Sect. 3). However, synthetic biology does not stand alone in making use of self-organization; it is a governing vision in robotics, ubiquitous computing, nano- and neuro-technologies (Sect. 4). Further, I show that instabilities constitute the conditions and, hence, the technoscientific core of self-organization (Sect. 5). Given the relevance of instabilities, I consider the inherent limits of late-modern (self-organization) technology in construction/design and control/monitoring, and in particular I elaborate why it is so difficult to control biosynthetic systems (Sect. 6). I end by drawing conclusions for the early-stage approach of ProTA and sum up the characteristics of late-modern technology as a challenging subject area of philosophy of technology (Sects. 7 and 8).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The main thesis presented in this paper is—to some extent—in line with what Nordmann calls “technology naturalized” (Nordmann 2008, 2005).
 
2
The concept of critical-synthetic interdisciplinarity has been developed in Schmidt (2011/2014).
 
3
Methodologically, ProTA encompasses four orientation perspectives that include four dimensions relevant to any innovation process: (1) early-stage orientation—the temporal dimension, (2) intention and potential orientation—the knowledge dimension, (3) shaping orientation—the power/actor dimension, and (4) orientation to the technoscientific core—the technoscientific dimension (Liebert and Schmidt 2010). The last dimension is closely linked to what von Gleich et al. (2012) refer to as “characterization of the system’s type of a new innovation.”
 
4
A new technological wave does not just occur or happen: it is also (probably even to a large extent) constructed (Liebert and Schmidt 2010).
 
5
Although it is sometimes helpful to consider the history of a notion in order to clarify what is meant, this is not the case with “synthetic biology.” On the one hand, “synthetic biology” seems to be a fairly young term. It was (re-)introduced and presented by Eric Kool in 2000 at the annual meeting of the American Chemical Society. Since then, the term has gone on to enjoy a remarkable career and general circulation in the scientific communities as well as in science, technology and innovation politics. On the other hand, the notion of “synthetic biology” emerged about 100 years ago—though it was rarely mentioned until 2000. It seems more appropriate to consider the more recent understandings of “synthetic biology.”
 
6
The European Technology Assessment Group uses the term “paradigm” and states that synthetic biology can be considered a “new research paradigm” (van Est et al. 2010, 14).
 
7
Scholars argue that the split—inherently linked to the Aristotelian understanding of nature (and of technology)—is still present in the life-world (Schiemann 2006; Böhme 1992).
 
8
In this paper, I do not address the question of evidence, i.e., whether each of the three definitions is sound and justified.
 
9
This term was coined and developed in (Schmidt 2004, 42). A somewhat similar notion is “general purpose technology.” Technological reductionism has not yet been recognized by philosophy of science and by STS. It is not to be confused with exploratory-oriented reductionism (“epistemological reductionism;” “representation”).
 
10
For example, the theories and concepts of the emerging technosciences (in a wider sense: “epistemology”).
 
11
There is a word family for “self-organization”. Cognate terms encompass: self-assembling, self-optimizing, self-replicating, self-growing, self-(re-)producing, self-constructing, self-activity, self-moving, self-orientating ….
 
12
In 1999 a working group of the National Science and Technology Council anticipated a new wave of technology based on self-organization: “With its own version of what scientists call nanoengineering, nature transforms these inexpensive, abundant, and inanimate ingredients into self-generating, self-perpetuating, self-repairing, self-aware creatures that walk, wiggle, swim, sniff, see, think, and even dream” (Amato 1999, 1; cf. Nordmann 2008, 174).
 
13
A new phase of “instrumentaliz[ing …] animate nature” is just emerging (Pottage and Sherman 2007, 545).
 
14
His approach was very visionary—it probably overestimated the feasibility of manipulation.
 
15
Ray Kurzweil argues from another perspective: “We already have a set of powerful tools that emerged from AI research and that have been refined and improved over several decades of development. The brain reverse engineering project will greatly augment this toolkit by also providing a panoply of new, biologically inspired, self-organizing techniques” (Kurzweil 2005, 265).
 
16
And the ETAG goes on to stress: “Central in their ideas is the concept of self-regulation, self-organization and feedback as essential characteristics of cognitive systems since continuous adaption to the environment is the only way for living systems to survive” (van Est et al. 2010, 25).
 
17
Nordmann continues: “Rather than force nature into the mold of crude machinery, biomimetic engineering learns from the intelligence and complexity of nature’s own design solutions” (ibid., 175).
 
18
In the same vein, Hubig talks about “trans-classical technology” (Hubig 2006) and Karafyllis about “biofacts” (Karafyllis 2003).
 
19
The notion “late-modern technology” should not be mixed up with any kind of postmodernism.
 
20
Ancient philosophers would claim that it is physis/nature and not techné because of its internal capacity for self-organization.
 
21
From a related but different angle—with reference to Kant—Nordmann talks about a “noumenal technology” to stress the “unknowability” of this kind of technology and “a limit to theoretical understanding” (Nordmann 2008, 180; see also: Nordmann 2005, 3ff).
 
22
My translation from German (J.C.S.).
 
23
In German “Strukturwissenschaften” (Weizsäcker 1974, 22). Weizsäcker coined the term “structural science”.
 
24
My translation from German (J.C.S.).
 
25
In particular, thermodynamics with its open non-equilibrium systems and the exchange of matter, energy, and information plays a key role (cf. J. C. Schmidt 2010; Mainzer 1996).
 
26
They have also induced the most recent developments in nanobiotechnology, robotics, artificial agents systems, and synthetic biology.
 
27
It should be noted that, although this is certainly a guiding ideal, it does not reflect the state-of-the-art. In synthetic biology we find a considerable internal dialectic between non-reductionism (“holism”) and reductionism.
 
28
Nature is, in fact, viewed from a somewhat technical (“technomorphic”) perspective.
 
29
Bionics can be regarded as an “interdiscipline” between biology and engineering.
 
30
In addition, it puts forward a somewhat static view of nature.
 
31
My translation (J.C.S.).
 
32
Although the term and concept of “emergence” appeared late in the scientific-philosophical debate (it was coined by George H. Lewes in 1875 and popularized in the early 20th century by the scholars of British Emergentism, Conwy Lloyd Morgan, Samuel Alexander, Roy W. Sellars and William McDougall) its content matter has a fairly long history.
 
33
Instabilities can be regarded as the source of self-organization, complexity, emergence, and noise. Nonlinearity is necessary, but not sufficient in this realm.
 
34
The list of examples is extensive (cp. Schmidt 2011): the emergence and onset of a chemical oscillation, the role-dynamics of a fluid in heat transfer, an enzyme kinetic reaction, a gear chattering, or turbulence of a flow. A fluid becomes viscous, ice crystallization emerges, a phase transition from the fluid to a gas phase takes place, a solid state becomes super-fluid, a laser issues forth light, a water tap begins to drip, a bridge crashes down, an earthquake or tsunami arises, a thermal conduction process comes to rest, and a convection sets in, e.g., Bénard instability. New patterns and structures appear. These examples underscore the fact that instabilities are the necessary condition for novelty. The various definitions of complexity refer directly or indirectly to instabilities—even if there is no reference to the genesis and evolution of a new pattern as is the case with the more geometric definitions of complexity via “dimensions.”
 
35
Strong causation can be characterized as: similar causes, similar effects. In other words, small initial differences do not play a major role.
 
36
These characteristics are not very precise. If we take a closer look, three kinds of instability can be distinguished: (a) Static instability (or watersheds), (b) dynamical instability (deterministic chaos), and (c) structural instability (bifurcations, thresholds, criticalities) (Schmidt 2011).
 
37
They further state, “first, noise can enable certain useful physiological regulation mechanisms, such as coordinating the expression of a large set of genes. Second, at the population level, noise permits a wide range of probabilistic differentiation strategies from microbial to multicellular organisms. Third, noise can facilitate evolutionary adaptation and developmental evolution. […] Noise is not merely a quirk of biological systems, but a core part of how they function and evolve” (ibid).
 
38
This is somewhat ironic because such technoscientific approaches form the very basis for emerging technologies such as synthetic biology.
 
39
The limited availability (of the systems) becomes more apparent the deeper the technological approach goes. One could say in a more provocative manner that the more late-modern societies, facilitated by (the ideals of) synthetic biologists, seem to control the material world, the more they lose their ability to control it. A control dialectic is present, as Kastenhofer and Schmidt (2011) show.
 
40
The central characteristics of traditional technology encompass predictability and reproducibility; these only partially hold in late-modern technology.
 
41
This includes (stability-presuming) traditional action theories such as von Wright’s approach.
 
42
In fact, instability-based “tinkering”, or the usage of random-based or non-rational processes, also constitutes the basis for the techniques of synthetic biology.
 
43
Nordmann does not explicitly mention synthetic biology (he addresses nanobiotechnology, classic biotechnology, ubiquitous computing, and the like)—nor does he analyze the underlying nomological structure (e.g., instabilities) in detail (Nordmann 2008, 173ff). However, his thesis that we are facing a new trend towards “technology naturalized” generally concurs with the thesis of this paper.
 
44
The chapter (“Laßt uns einen Menschen klonieren: Von der Eugenik zur Gentechnologie,” 1987) and the book (“Technik, Medizin und Ethik”, 1987) have only been published in German.
 
45
The new “collaborative kind of technology” seems to be closer to humans and to their actions and self-perception; it is not alien to humans like the mechanical type of technology of classic-modern engineering. From the same perspective, and a few decades earlier, the Marxist philosopher Ernst Bloch coined the term “alliance technology” to underline the difference between mechanical and biology-based technology (Bloch 1959). According to Bloch, we may call a technology based on self-organization “alliance technology” (von Gleich 1989).
 
46
He had this in mind when he formulated his precautionary principle. He believed that we should stick to classic-modern technology. His conception of adequate technology is therefore, in some respects, similar to what Drew Endy (2005) advocates.
 
47
ProTA shares some elements with vision assessment (cf. Grin and Grunwald 2000). For general elements of ProTA in this regard, see: Liebert and Schmidt (2010).
 
48
Dupuy states: “The unpredictable behavior […] means that engineers will not know how to make [… these] machines until they actually start building them” (Dupuy 2004; cf. Nordmann 2006). The famous physicist Richard Feynman is quoted as saying: “What I cannot create, I do not understand” (cf. Schwille and Diez 2009; Schmidt 2009).
 
49
In line with this, Bill Joy advocates the well-known and highly disputed dystopia: the “gray goo” (Joy 2000).
 
50
The “systems type of synthetic biology” is analyzed and assessed in more detail in: von Gleich et al. (2012).
 
51
In order to provide clear-cut criteria, a further inquiry into different types of instability and self-organization would be necessary. A proposal for such is given in Schmidt (2005a, 2011).
 
52
The latter questions come close to Hans Jonas’ approach in his seminal book Imperative of Responsibility (Jonas 1984); Jonas was always very concerned and hesitant towards new technology movements in which properties such as uncertainty and non-knowledge are co-produced. Based on his heuristics of fear Jonas would have raised objections to and, to some extent, have rejected an uncontrollable global project such as synthetic biology.—Nordmann remains skeptical as to whether we can cope with this kind of technology (cf. Nordmann 2008, 2005). His objections are far-reaching—and advocate a fundamental critique: “This is a critique no longer of what we do to nature in the name of social and economic control. Instead it is a critique of what we do to ourselves as we surrender control to pervasive technical systems.” (Nordmann 2008, 182).
 
53
Hence, it is rather narrow to argue that technology is becoming biological and at the same time that biology is becoming technological (van Est et al. 2010, 25).
 
54
With reference to Dupuy’s approach, Nordmann (2008, 184) argues that we should “carefully contain […] the implementation of these technical visions”—because, in principle, it is impossible to monitor, control, and shape these late-modern technical systems.
 
55
Whether this is possible or not certainly remains an open question. Nordmann (2008), for instance, doubts that this kind of (late-modern) technology—or “naturalized technology”—can be shaped and controlled from a societal perspective.
 
Literatur
Zurück zum Zitat Amato, I. (1999). Nanotechnology: Shaping the world atom by atom. Washington: NTSC/CT. Amato, I. (1999). Nanotechnology: Shaping the world atom by atom. Washington: NTSC/CT.
Zurück zum Zitat Beckermann, A., Flohr, H., & Kim, J. (1992). Emergence or reduction? Berlin: Walter de Gruyter.CrossRef Beckermann, A., Flohr, H., & Kim, J. (1992). Emergence or reduction? Berlin: Walter de Gruyter.CrossRef
Zurück zum Zitat Bertalanffy, L. V. (1968). General system theory. New York: Braziller. Bertalanffy, L. V. (1968). General system theory. New York: Braziller.
Zurück zum Zitat Bloch, E. (1959). Das Prinzip Hoffnung (Vol. 2). Frankfurt: Suhrkamp. Bloch, E. (1959). Das Prinzip Hoffnung (Vol. 2). Frankfurt: Suhrkamp.
Zurück zum Zitat Böhme, G. (1992). Natürlich Natur. Über Natur im Zeitalter ihrer technischen Reproduzierbarkeit. Frankfurt: Suhrkamp. Böhme, G. (1992). Natürlich Natur. Über Natur im Zeitalter ihrer technischen Reproduzierbarkeit. Frankfurt: Suhrkamp.
Zurück zum Zitat Csete, M. E., & Doyle, J. C. (2002). Reverse engineering of biological complexity. Science, 295(5560), 1664–1669.CrossRef Csete, M. E., & Doyle, J. C. (2002). Reverse engineering of biological complexity. Science, 295(5560), 1664–1669.CrossRef
Zurück zum Zitat Deplazes, A., & Huppenbauer, M. (2009). Synthetic organisms and living machines: Positioning the products of synthetic biology at the borderline between living and nonliving matter. Systems and Synthetic Biology, 3(1–4), 55–63. doi:10.1007/s11693-009-9029-4.CrossRef Deplazes, A., & Huppenbauer, M. (2009). Synthetic organisms and living machines: Positioning the products of synthetic biology at the borderline between living and nonliving matter. Systems and Synthetic Biology, 3(1–4), 55–63. doi:10.​1007/​s11693-009-9029-4.CrossRef
Zurück zum Zitat DFG, acatech & Lepoldina. (2009). Synthetische Biologie. Stellungnahme. Bonn. DFG, acatech & Lepoldina. (2009). Synthetische Biologie. Stellungnahme. Bonn.
Zurück zum Zitat Drexler, K. E. (1990). Engines of creation. The coming era of nanotechnology. Oxford: Oxford University Press. Drexler, K. E. (1990). Engines of creation. The coming era of nanotechnology. Oxford: Oxford University Press.
Zurück zum Zitat Dupuy, J. P. (2004). Complexity and uncertainty: A prudential approach to nanotechnology. In European Commission—Health and Consumer Protection Directorate General (Ed.), Nanotechnologies: A preliminary risk analysis on the basis of a workshop organized in Brussels on 1–2 March 2004 by the health and consumer protection directorate general of the European commission (pp. 78–94). Brussels: Commission of the European Communities—Health and Consumer Protection Directorate General. Download: http://ec.europa.eu/health/ph_risk/documents/ev_20040301_en.pdf. Accessed March 20, 2014. Dupuy, J. P. (2004). Complexity and uncertainty: A prudential approach to nanotechnology. In European Commission—Health and Consumer Protection Directorate General (Ed.), Nanotechnologies: A preliminary risk analysis on the basis of a workshop organized in Brussels on 1–2 March 2004 by the health and consumer protection directorate general of the European commission (pp. 78–94). Brussels: Commission of the European Communities—Health and Consumer Protection Directorate General. Download: http://​ec.​europa.​eu/​health/​ph_​risk/​documents/​ev_​20040301_​en.​pdf. Accessed March 20, 2014.
Zurück zum Zitat Dupuy, J. P., & Grinbaum, A. (2006). Living with uncertainty—toward the ongoing normative assessment of nanotechnology. In J. Schummer & D. Baird (Eds.), Nanotechnology challenges: Implications for philosophy, ethics and society (pp. 287–314). Singapore: World Scientific.CrossRef Dupuy, J. P., & Grinbaum, A. (2006). Living with uncertainty—toward the ongoing normative assessment of nanotechnology. In J. Schummer & D. Baird (Eds.), Nanotechnology challenges: Implications for philosophy, ethics and society (pp. 287–314). Singapore: World Scientific.CrossRef
Zurück zum Zitat Ebeling, W. & Feistel, R. (1994). Chaos und Kosmos. Prinzipien der Evolution. Heidelberg: Spektrum Akademischer Verlag. Ebeling, W. & Feistel, R. (1994). Chaos und Kosmos. Prinzipien der Evolution. Heidelberg: Spektrum Akademischer Verlag.
Zurück zum Zitat European Commission (2005). Synthetic biology. Applying engineering to biology, report of a NEST-high level expert group EU 21796. Brussels. European Commission (2005). Synthetic biology. Applying engineering to biology, report of a NEST-high level expert group EU 21796. Brussels.
Zurück zum Zitat Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52--56. doi:10.1126/science.1190719.CrossRef Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., et al. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52--56. doi:10.​1126/​science.​1190719.CrossRef
Zurück zum Zitat Giese, B., Koenigstein, S., Wigger, H., Schmidt, J. C., & von Gleich, A. (2013). Rational engineering principles in synthetic biology: A framework for quantitative analysis and an initial assessment. Biological Theory, 8(4), 324–333. doi:10.1007/s13752-013-0130-2.CrossRef Giese, B., Koenigstein, S., Wigger, H., Schmidt, J. C., & von Gleich, A. (2013). Rational engineering principles in synthetic biology: A framework for quantitative analysis and an initial assessment. Biological Theory, 8(4), 324–333. doi:10.​1007/​s13752-013-0130-2.CrossRef
Zurück zum Zitat Grin, J., & Grunwald, A. (Eds.). (2000). Vision assessment. Berlin: Springer. Grin, J., & Grunwald, A. (Eds.). (2000). Vision assessment. Berlin: Springer.
Zurück zum Zitat Grunwald, A. (2008). Auf dem Weg in eine nanotechnologische Zukunft. Philosophisch-ethische Fragen. Freiburg: Karl Alber. Grunwald, A. (2008). Auf dem Weg in eine nanotechnologische Zukunft. Philosophisch-ethische Fragen. Freiburg: Karl Alber.
Zurück zum Zitat Grunwald, A. (2012). Synthetische Biologie als Naturwissenschaft mit technischer Ausrichtung. Plädoyer für eine “Hermeneutische Technikfolgenabschätzung”. Technikfolgenabschätzung—Theorie und Praxis, 21(2), 10–15. Grunwald, A. (2012). Synthetische Biologie als Naturwissenschaft mit technischer Ausrichtung. Plädoyer für eine “Hermeneutische Technikfolgenabschätzung”. Technikfolgenabschätzung—Theorie und Praxis, 21(2), 10–15.
Zurück zum Zitat Heylighen, F. (2002). The science of self-organization and adaptivity. Unpublished working paper. Belgium: Center Leo Apostel, Free University of Brussels. Heylighen, F. (2002). The science of self-organization and adaptivity. Unpublished working paper. Belgium: Center Leo Apostel, Free University of Brussels.
Zurück zum Zitat Hubig, C. (2006). Die Kunst des Möglichen I. Technikphilosophie als Reflexion der Medialität. Bielefeld: Transcript. Hubig, C. (2006). Die Kunst des Möglichen I. Technikphilosophie als Reflexion der Medialität. Bielefeld: Transcript.
Zurück zum Zitat Jonas, H. (1966). The phenomenon of life: toward a philosophical biology (Northwestern University studies in phenomenology and existential philosophy). Evanston: Northwestern University Press. Jonas, H. (1966). The phenomenon of life: toward a philosophical biology (Northwestern University studies in phenomenology and existential philosophy). Evanston: Northwestern University Press.
Zurück zum Zitat Jonas, H. (1984). The imperative of responsibility. In search of an ethics for the technological age. Chicago: University of Chicago Press. Jonas, H. (1984). The imperative of responsibility. In search of an ethics for the technological age. Chicago: University of Chicago Press.
Zurück zum Zitat Jonas, H. (1985). Laßt uns einen Menschen klonieren. In H. Jonas, Technik, Medizin und Ethik (pp 162–202). Frankfurt am Main: Insel. Jonas, H. (1985). Laßt uns einen Menschen klonieren. In H. Jonas, Technik, Medizin und Ethik (pp 162–202). Frankfurt am Main: Insel.
Zurück zum Zitat Jones, R. (2004). Soft machines. Oxford: Oxford University Press. Jones, R. (2004). Soft machines. Oxford: Oxford University Press.
Zurück zum Zitat Joy, B. (2000). Why the future doesn’t need us? Our most powerful 21st-century technologies—robotics, genetic engineering, and nanotech—are threatening to make humans an endangered species. Wired Magazine (8.04), 238–262. Joy, B. (2000). Why the future doesn’t need us? Our most powerful 21st-century technologies—robotics, genetic engineering, and nanotech—are threatening to make humans an endangered species. Wired Magazine (8.04), 238–262.
Zurück zum Zitat Kant, I. (1755). Allgemeine Naturgeschichte und Theorie des Himmels oder Versuch von der Verfassung und dem mechanischen Ursprunge des ganzen Weltgebäudes, nach Newtonischen Grundsätzen abgehandelt. In Kants gesammelte Schriften Bd. I./I, 1747-1756 (pp. 215-368). Königsberg; Leipzig: Petersen. Kant, I. (1755). Allgemeine Naturgeschichte und Theorie des Himmels oder Versuch von der Verfassung und dem mechanischen Ursprunge des ganzen Weltgebäudes, nach Newtonischen Grundsätzen abgehandelt. In Kants gesammelte Schriften Bd. I./I, 1747-1756 (pp. 215-368). Königsberg; Leipzig: Petersen.
Zurück zum Zitat Kant, I. (1790/2007). Critique of Judgment (J. C. Meredith, Trans.). Oxford: Oxford University Press. Kant, I. (1790/2007). Critique of Judgment (J. C. Meredith, Trans.). Oxford: Oxford University Press.
Zurück zum Zitat Karafyllis, N. C. (Ed.). (2003). Biofakte. Paderborn: Mentis. Karafyllis, N. C. (Ed.). (2003). Biofakte. Paderborn: Mentis.
Zurück zum Zitat Kastenhofer, K., & Schmidt, J. C. (2011). On intervention, construction and creation: Power and knowledge in technoscience and late-modern technology. In T. Zülsdorf, C. Coenen, A. Ferrari, U. Fiedeler, & C. Milburn (Eds.), Quantum engagements: Social reflections of nanoscience and emerging technologies (pp. 177–194). Heidelberg: IOS Press. Kastenhofer, K., & Schmidt, J. C. (2011). On intervention, construction and creation: Power and knowledge in technoscience and late-modern technology. In T. Zülsdorf, C. Coenen, A. Ferrari, U. Fiedeler, & C. Milburn (Eds.), Quantum engagements: Social reflections of nanoscience and emerging technologies (pp. 177–194). Heidelberg: IOS Press.
Zurück zum Zitat Khushf, G. (2004). A hierarchical architecture for nano-scale science and technology. In D. Baird, A. Nordmann, & J. Schummer (Eds.), Discovering the nanoscale. Amsterdam: IOS Press. Khushf, G. (2004). A hierarchical architecture for nano-scale science and technology. In D. Baird, A. Nordmann, & J. Schummer (Eds.), Discovering the nanoscale. Amsterdam: IOS Press.
Zurück zum Zitat Köchy, K. (2011). Konstruktion von Leben? Herstellungsideale und Machbarkeitsgrenzen in der Synthetischen Biologie. In V. Gerhardt, K. Lucas, & G. Stock (Eds.), Evolution. Theorie, Formen und Konsequenzen eines Paradigmas in Natur, Technik und Kultur (pp. 233–242). Berlin: Akademie Verlag. Köchy, K. (2011). Konstruktion von Leben? Herstellungsideale und Machbarkeitsgrenzen in der Synthetischen Biologie. In V. Gerhardt, K. Lucas, & G. Stock (Eds.), Evolution. Theorie, Formen und Konsequenzen eines Paradigmas in Natur, Technik und Kultur (pp. 233–242). Berlin: Akademie Verlag.
Zurück zum Zitat Köchy, K. (2012). Sind die Überlegungen von Hans Jonas zum Sonderstatus biologischer Technik angesichts der Entwicklung in der Synthetischen Biologie noch haltbar? In M. B. Bondio, & H. Siebenpfeiffer (Eds.), Konzepte des Humanen. Ethische und kulturelle Herausforderungen. (pp. 81–101). Freiburg: Karl Alber Verlag. Köchy, K. (2012). Sind die Überlegungen von Hans Jonas zum Sonderstatus biologischer Technik angesichts der Entwicklung in der Synthetischen Biologie noch haltbar? In M. B. Bondio, & H. Siebenpfeiffer (Eds.), Konzepte des Humanen. Ethische und kulturelle Herausforderungen. (pp. 81–101). Freiburg: Karl Alber Verlag.
Zurück zum Zitat Krohn, W. & Küppers, G. (Eds.). (1992). Selbstorganisation. Aspekte einer wissenschaftlichen Revolution. Wiesbaden: Vieweg Verlagsgesellschaft. Krohn, W. & Küppers, G. (Eds.). (1992). Selbstorganisation. Aspekte einer wissenschaftlichen Revolution. Wiesbaden: Vieweg Verlagsgesellschaft.
Zurück zum Zitat Küppers, B.-O. (2000). Die Strukturwissenschaften als Bindeglied zwischen Natur- und Geisteswissenschaften. In B.-O. Küppers (Ed.), Die Einheit der Wirklichkeit. Zum Wissenschaftsverständnis der Gegenwart. München: Fink. Küppers, B.-O. (2000). Die Strukturwissenschaften als Bindeglied zwischen Natur- und Geisteswissenschaften. In B.-O. Küppers (Ed.), Die Einheit der Wirklichkeit. Zum Wissenschaftsverständnis der Gegenwart. München: Fink.
Zurück zum Zitat Kurzweil, R. (2005). The singularity is near. When humans transcend biology. New York: Penguin Group. Kurzweil, R. (2005). The singularity is near. When humans transcend biology. New York: Penguin Group.
Zurück zum Zitat Liebert, W., & Schmidt, J. C. (2010). Towards a prospective technology assessment: Challenges and requirements for technology assessment in the age of technoscience. Poiesis and Praxis, 7(1–2), 99–116. doi:10.1007/s10202-010-0079-1.CrossRef Liebert, W., & Schmidt, J. C. (2010). Towards a prospective technology assessment: Challenges and requirements for technology assessment in the age of technoscience. Poiesis and Praxis, 7(1–2), 99–116. doi:10.​1007/​s10202-010-0079-1.CrossRef
Zurück zum Zitat Luhmann, N. (2003). Soziologie des Risikos. Berlin, New York: Walter de Gruyter. Luhmann, N. (2003). Soziologie des Risikos. Berlin, New York: Walter de Gruyter.
Zurück zum Zitat Mainzer, K. (1996). Thinking in complexity. The complex dynamics of matter, mind, and mankind. Heidelberg: Springer.MATH Mainzer, K. (1996). Thinking in complexity. The complex dynamics of matter, mind, and mankind. Heidelberg: Springer.MATH
Zurück zum Zitat Marliere, P. (2009). The farther, the safer: A manifesto for securely navigating synthetic species away from the old living world. Systems and Synthetic Biology, 3(1–4), 77–84. doi:10.1007/s11693-009-9040-9.CrossRef Marliere, P. (2009). The farther, the safer: A manifesto for securely navigating synthetic species away from the old living world. Systems and Synthetic Biology, 3(1–4), 77–84. doi:10.​1007/​s11693-009-9040-9.CrossRef
Zurück zum Zitat Mitchell, S. (2008). Warum wir erst anfangen, die Welt zu verstehen. Frankfurt: Suhrkamp. Mitchell, S. (2008). Warum wir erst anfangen, die Welt zu verstehen. Frankfurt: Suhrkamp.
Zurück zum Zitat Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems. From dissipative structures to order through fluctuations. New York, London: Wiley.MATH Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems. From dissipative structures to order through fluctuations. New York, London: Wiley.MATH
Zurück zum Zitat Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. Cambridge: MIT Press. Nolfi, S., & Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines. Cambridge: MIT Press.
Zurück zum Zitat Nordmann, A. (2006). Die Welt als Baukastensystem. Politische Ökologie, 101, 20–23. Nordmann, A. (2006). Die Welt als Baukastensystem. Politische Ökologie, 101, 20–23.
Zurück zum Zitat Nordmann, A. (2008). Technology naturalized: A challenge to design for the human scale. In P. E. Vermaas, P. Kroes, A. Light, & S. Moore (Eds.), Philosophy and design (pp. 173–184). Netherlands: Springer.CrossRef Nordmann, A. (2008). Technology naturalized: A challenge to design for the human scale. In P. E. Vermaas, P. Kroes, A. Light, & S. Moore (Eds.), Philosophy and design (pp. 173–184). Netherlands: Springer.CrossRef
Zurück zum Zitat Pottage, A., & Sherman, B. (2007). Organisms and manufactures: On the history of plant inventions. Melb Univ Law Rev, 31(2), 539–568. Pottage, A., & Sherman, B. (2007). Organisms and manufactures: On the history of plant inventions. Melb Univ Law Rev, 31(2), 539–568.
Zurück zum Zitat Pühler, A., Müller-Röber, B., & Weitze, M.-D. (Eds.). (2011). Synthetische Biologie. Die Geburt einer neuen Technikwissenschaft. Berlin: Springer. Pühler, A., Müller-Röber, B., & Weitze, M.-D. (Eds.). (2011). Synthetische Biologie. Die Geburt einer neuen Technikwissenschaft. Berlin: Springer.
Zurück zum Zitat Roco, M. C., & Bainbridge, W. S. (2002). Converging technologies for improving human performance: Integrating from the nanoscale. Journal of Nanoparticle Research, 4(4), 295. doi:10.1023/A:1021152023349.CrossRef Roco, M. C., & Bainbridge, W. S. (2002). Converging technologies for improving human performance: Integrating from the nanoscale. Journal of Nanoparticle Research, 4(4), 295. doi:10.​1023/​A:​1021152023349.CrossRef
Zurück zum Zitat Schelling, F. W. J. (1994). Ideen zu einer Philosophie der Natur (1797). In M. Durner (Ed.), Historisch-kritische Ausgabe, Reihe 1: Werke 5. Stuttgart: Frommann-Holzboog. Schelling, F. W. J. (1994). Ideen zu einer Philosophie der Natur (1797). In M. Durner (Ed.), Historisch-kritische Ausgabe, Reihe 1: Werke 5. Stuttgart: Frommann-Holzboog.
Zurück zum Zitat Schiemann, G. (2004). Dissolution of the nature-technology dichotomy? Perspectives on nanotechnology from an everyday understanding of nature. In D. Baird, A. Nordmann, & J. Schummer (Eds.), Discovering the nanoscale (pp. 209–213). Amsterdam: IOC Press. Schiemann, G. (2004). Dissolution of the nature-technology dichotomy? Perspectives on nanotechnology from an everyday understanding of nature. In D. Baird, A. Nordmann, & J. Schummer (Eds.), Discovering the nanoscale (pp. 209–213). Amsterdam: IOC Press.
Zurück zum Zitat Schiemann, G. (2006). Kein Weg vorbei an der Natur. Natur als Gegenpart und Voraussetzung der Nanotechnologie. In A. Nordmann, J. Schummer, & A. Schwarz (Eds.), Nanotechnologien im Kontext (pp. 115–130). Berlin: Akademische Verlagsgesellschaft. Schiemann, G. (2006). Kein Weg vorbei an der Natur. Natur als Gegenpart und Voraussetzung der Nanotechnologie. In A. Nordmann, J. Schummer, & A. Schwarz (Eds.), Nanotechnologien im Kontext (pp. 115–130). Berlin: Akademische Verlagsgesellschaft.
Zurück zum Zitat Schmidt, J. C. (2004). Unbounded technologies: Working through the technological reductionism of nanotechnology. In D. Baird, A. Nordmann, & J. Schummer (Eds.), Discovering the nanoscale (pp. 35-50). Amsterdam: IOS Press. Schmidt, J. C. (2004). Unbounded technologies: Working through the technological reductionism of nanotechnology. In D. Baird, A. Nordmann, & J. Schummer (Eds.), Discovering the nanoscale (pp. 35-50). Amsterdam: IOS Press.
Zurück zum Zitat Schmidt, J. C. (2005a). Einheit und Vielheit von Selbstorganisation in der Physik. In G. Abel (Ed.), Kreativität. XX. Deutscher Kongress für Philosophie. Bd.1 (pp. 299–310). Berlin: Universitätsverlag der TU Berlin. Schmidt, J. C. (2005a). Einheit und Vielheit von Selbstorganisation in der Physik. In G. Abel (Ed.), Kreativität. XX. Deutscher Kongress für Philosophie. Bd.1 (pp. 299–310). Berlin: Universitätsverlag der TU Berlin.
Zurück zum Zitat Schmidt, J. C. (2005b). Bionik und Interdisziplinarität. Wege zu einer bionischen Zirkulationstheorie der Interdisziplinarität. In T. Rossmann & C. Tropea (Eds.), Bionik. Aktuelle Forschungsergebnisse aus Natur-, Ingenieur- und Geisteswissenschaften (pp. 219–246). Berlin: Springer. Schmidt, J. C. (2005b). Bionik und Interdisziplinarität. Wege zu einer bionischen Zirkulationstheorie der Interdisziplinarität. In T. Rossmann & C. Tropea (Eds.), Bionik. Aktuelle Forschungsergebnisse aus Natur-, Ingenieur- und Geisteswissenschaften (pp. 219–246). Berlin: Springer.
Zurück zum Zitat Schmidt, J. C. (2008a). Instabilität in Natur und Wissenschaft. Berlin: De Gruyter.CrossRef Schmidt, J. C. (2008a). Instabilität in Natur und Wissenschaft. Berlin: De Gruyter.CrossRef
Zurück zum Zitat Schmidt, J. C. (2008b). Unbestimmtheit der Nanoforschung. Über Kontrolle der (und in der) Nanotechnoscience. In K. Köchy, N. Norwig, & G. Hofmeister (Eds.), Nanobiotechnologien. Philosophische, anthropologische und ethische Fragen (pp. 37–54). Freiburg: Karl Alber. Schmidt, J. C. (2008b). Unbestimmtheit der Nanoforschung. Über Kontrolle der (und in der) Nanotechnoscience. In K. Köchy, N. Norwig, & G. Hofmeister (Eds.), Nanobiotechnologien. Philosophische, anthropologische und ethische Fragen (pp. 37–54). Freiburg: Karl Alber.
Zurück zum Zitat Schmidt, J. C. (2010). Emergence. In D. Guston (Ed.), Encyclopedia of nanoscience and society, (pp. 180–184). London: Sage Books. Schmidt, J. C. (2010). Emergence. In D. Guston (Ed.), Encyclopedia of nanoscience and society, (pp. 180–184). London: Sage Books.
Zurück zum Zitat Schmidt, J. C. (2011). Challenged by instability and complexity. On the methodological discussion of mathematical models in nonlinear sciences and complexity theory. In C. Hooker (Ed.), Philosophy of complex systems (philosophy of sciences series) (pp. 223–254). Amsterdam, Boston: Elsevier.CrossRef Schmidt, J. C. (2011). Challenged by instability and complexity. On the methodological discussion of mathematical models in nonlinear sciences and complexity theory. In C. Hooker (Ed.), Philosophy of complex systems (philosophy of sciences series) (pp. 223–254). Amsterdam, Boston: Elsevier.CrossRef
Zurück zum Zitat Schmidt, J. C. (2012a). Selbstorganisation als Kern der Synthetischen Biologie. Ein Beitrag zur Prospektiven Technikfolgenabschätzung. Technikfolgenabschätzung. Theorie und Praxis, 21(2), 29–35. Schmidt, J. C. (2012a). Selbstorganisation als Kern der Synthetischen Biologie. Ein Beitrag zur Prospektiven Technikfolgenabschätzung. Technikfolgenabschätzung. Theorie und Praxis, 21(2), 29–35.
Zurück zum Zitat Schmidt, J. C. (2012b). Quellen des Nichtwissens. Ein Beitrag zur Wissenschafts- und Technikphilosophie des Nichtwissens. In N. Janich, A. Nordmann, & L. Schebek (Eds.), Nichtwissenskommunikation in den Wissenschaften. (pp. 93–124). Frankfurt: Lang. Schmidt, J. C. (2012b). Quellen des Nichtwissens. Ein Beitrag zur Wissenschafts- und Technikphilosophie des Nichtwissens. In N. Janich, A. Nordmann, & L. Schebek (Eds.), Nichtwissenskommunikation in den Wissenschaften. (pp. 93–124). Frankfurt: Lang.
Zurück zum Zitat Schmidt, J. C. (2014). Philosophy of interdisciplinarity. Towards a critical-synthetic account of interdisciplinarity (manuscript under review). Schmidt, J. C. (2014). Philosophy of interdisciplinarity. Towards a critical-synthetic account of interdisciplinarity (manuscript under review).
Zurück zum Zitat Schmidt, M. (2009). Do I understand what I can create? Biosafety issues in synthetic biology. In M. Schmidt, A. Kelle, A. Ganguli-Mitra, & H. De Vriend (Eds.), Synthetic biology (pp. 81–100). Berlin: Springer.CrossRef Schmidt, M. (2009). Do I understand what I can create? Biosafety issues in synthetic biology. In M. Schmidt, A. Kelle, A. Ganguli-Mitra, & H. De Vriend (Eds.), Synthetic biology (pp. 81–100). Berlin: Springer.CrossRef
Zurück zum Zitat Schmidt, M. & de Lorenzo, V. (2012). Synthetic constructs in/for the environment: Managing the interplay between natural and engineered Biology. Fed. of Europ. Biochem. Soc. Lett, 586(15), 2199–2206. Schmidt, M. & de Lorenzo, V. (2012). Synthetic constructs in/for the environment: Managing the interplay between natural and engineered Biology. Fed. of Europ. Biochem. Soc. Lett, 586(15), 2199–2206.
Zurück zum Zitat Schummer, J. (2011). Das Gotteshandwerk. Die künstliche Herstellung von Leben im Labor. Berlin: Suhrkamp. Schummer, J. (2011). Das Gotteshandwerk. Die künstliche Herstellung von Leben im Labor. Berlin: Suhrkamp.
Zurück zum Zitat Schwille, P., & Diez, S. (2009). Synthetic biology of minimal systems. Critical Reviews in Biochemistry and Molecular Biology, 44(4), 223–242.CrossRef Schwille, P., & Diez, S. (2009). Synthetic biology of minimal systems. Critical Reviews in Biochemistry and Molecular Biology, 44(4), 223–242.CrossRef
Zurück zum Zitat Tucker, J. B., & Zilinskas, R. A. (2006). The promise and perils of synthetic biology. New Atlantis, 12, 25–45. Tucker, J. B., & Zilinskas, R. A. (2006). The promise and perils of synthetic biology. New Atlantis, 12, 25–45.
Zurück zum Zitat van Est, R., van Keulen, I., Geesink, I. & Schuijff, M. (2010). Making perfect life: Bioengineering (in) the 21st century (Interim Study). Report Nr. IP/A/STOA/FWC-2008-96/LOT6/SC1 (PE 438.829). The Hague: European Parliament—Science and Technology Options Assessment. Download: https://www.itas.kit.edu/downloads/etag_esua10a.pdf. Accessed March 20, 2014. van Est, R., van Keulen, I., Geesink, I. & Schuijff, M. (2010). Making perfect life: Bioengineering (in) the 21st century (Interim Study). Report Nr. IP/A/STOA/FWC-2008-96/LOT6/SC1 (PE 438.829). The Hague: European Parliament—Science and Technology Options Assessment. Download: https://​www.​itas.​kit.​edu/​downloads/​etag_​esua10a.​pdf. Accessed March 20, 2014.
Zurück zum Zitat von Gleich, A. (1989). Der wissenschaftliche Umgang mit der Natur : über die Vielfalt harter und sanfter Naturwissenschaften. Frankfurt am Main; New York: Campus. von Gleich, A. (1989). Der wissenschaftliche Umgang mit der Natur : über die Vielfalt harter und sanfter Naturwissenschaften. Frankfurt am Main; New York: Campus.
Zurück zum Zitat von Gleich, A. (Ed.). (1998). Bionik. Ökologische Technik nach dem Vorbild der Natur? Stuttgart: Teubner. von Gleich, A. (Ed.). (1998). Bionik. Ökologische Technik nach dem Vorbild der Natur? Stuttgart: Teubner.
Zurück zum Zitat von Gleich, A. (2004). Technikcharakterisierung als Ansatz einer vorsorgeorientierten prospektiven Innovations- und Technikanalyse. In A. Bora, M. Decker, A. Grunwald, & O. Renn (Eds.), Technik in einer fragilen Welt. Die Rolle der Technikfolgenabschätzung. Berlin: edition sigma. von Gleich, A. (2004). Technikcharakterisierung als Ansatz einer vorsorgeorientierten prospektiven Innovations- und Technikanalyse. In A. Bora, M. Decker, A. Grunwald, & O. Renn (Eds.), Technik in einer fragilen Welt. Die Rolle der Technikfolgenabschätzung. Berlin: edition sigma.
Zurück zum Zitat von Gleich, A., Giese, B., Königstein, S. & Schmidt, J. C. (2012). Synthetische Biologie: Revolution oder Evolution? Definition, Charakterisierung und Entwicklungsperspektiven der Synthetischen Biologie mit Fokus auf den damit verbundenen Chancen und Risiken (TAB-Gutachten). Bremen: afortec. von Gleich, A., Giese, B., Königstein, S. & Schmidt, J. C. (2012). Synthetische Biologie: Revolution oder Evolution? Definition, Charakterisierung und Entwicklungsperspektiven der Synthetischen Biologie mit Fokus auf den damit verbundenen Chancen und Risiken (TAB-Gutachten). Bremen: afortec.
Zurück zum Zitat Weizsäcker, C. F. v. (1974). Die Einheit der Natur. München: dtv. Weizsäcker, C. F. v. (1974). Die Einheit der Natur. München: dtv.
Zurück zum Zitat Westerhoff, H. V., & Palsson, B. O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, 22(10), 1249–1252. doi:10.1038/nbt1020.CrossRef Westerhoff, H. V., & Palsson, B. O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, 22(10), 1249–1252. doi:10.​1038/​nbt1020.CrossRef
Zurück zum Zitat Wiener, N. (1948/1968). Kybernetik. Regelung und Nachrichtenübertragung in Lebewesen und Maschine. (2nd ed.). Reinbek bei Hamburg: Rowohlt. Wiener, N. (1948/1968). Kybernetik. Regelung und Nachrichtenübertragung in Lebewesen und Maschine. (2nd ed.). Reinbek bei Hamburg: Rowohlt.
Metadaten
Titel
Synthetic Biology as Late-Modern Technology
verfasst von
Jan C. Schmidt
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-02783-8_1