Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 4/2020

12.03.2020 | Original Paper

Techno-economic assessment of a biomass-based combined power and cooling plant for rural application

verfasst von: Suman Chattopadhyay, Sudip Ghosh

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents techno-economic assessment of a biomass-based combined power and cooling plant suitable for off-grid rural areas. The proposed plant employs an indirectly heated air turbine cycle drawing heat from combustion of biomass-derived producer gas. The installation capacity of 50 kW is determined based on the present electricity demand and taking into account the possible demand growth over next 10 years. The gas turbine operating condition is optimized at pressure ratio 10 and turbine inlet temperature 1100 °C, where it shows maximum efficiency. Waste heat of the power generation unit is utilized by a 120 metric ton (MT) cold storage facility that runs on NH3–water vapour absorption refrigeration cycle. Both electrical and thermal storage units are included in the plant to cater to the hourly variations in power and heat demands. Lithium-ion battery is chosen for electrical storage, and Hitec salt-based phase change material is chosen for thermal storage, their storage capacities being estimated at 250 kWh and 220 kWh, respectively. The paper proposes a new method of determining effective cost of electricity, taking into account the avoided electricity for conventional cooling. The effective price of electricity is found to be 0.08 USD/kWh. Estimated payback period of the plant, without subsidy, is 14.4 years, and with 50% capital subsidy this is reduced to 6.6 years. Cost of storage as well as the discount rate is seen to influence the plant economy and payback period considerably. Based on the analysis, a policy recommendation has also been outlined in the paper.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmadi P, Dincer I, Rosen MA (2014) Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system. Energy 68:958–970CrossRef Ahmadi P, Dincer I, Rosen MA (2014) Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system. Energy 68:958–970CrossRef
Zurück zum Zitat Banerjee R, Pandey R, Bhure R, Phulluke S (2006) Electricity demand estimation for village electrification. Rep Indian Institute of Technology Bombay White Paper Banerjee R, Pandey R, Bhure R, Phulluke S (2006) Electricity demand estimation for village electrification. Rep Indian Institute of Technology Bombay White Paper
Zurück zum Zitat Buragohain B, Mahanta P, Moholkar VS (2010) Biomass gasification for decentralized power generation: the indian perspective. Renew Sustain Energy Rev 14:73–92CrossRef Buragohain B, Mahanta P, Moholkar VS (2010) Biomass gasification for decentralized power generation: the indian perspective. Renew Sustain Energy Rev 14:73–92CrossRef
Zurück zum Zitat Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063CrossRef Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063CrossRef
Zurück zum Zitat Colonna P, Gabrielli S (2003) Industrial trigeneration using ammonia-water absorption refrigeration systems (AAR). Appl Therm Eng 23:381–396CrossRef Colonna P, Gabrielli S (2003) Industrial trigeneration using ammonia-water absorption refrigeration systems (AAR). Appl Therm Eng 23:381–396CrossRef
Zurück zum Zitat Cycle-Tempo Release 5 (2008) TU Delft, Postbus, Delft, The Netherlands Cycle-Tempo Release 5 (2008) TU Delft, Postbus, Delft, The Netherlands
Zurück zum Zitat da Cunha JP, Eames P (2016) Thermal energy storage for low and medium temperature applications using phase change materials: a review. Appl Energy 177:227–238CrossRef da Cunha JP, Eames P (2016) Thermal energy storage for low and medium temperature applications using phase change materials: a review. Appl Energy 177:227–238CrossRef
Zurück zum Zitat Datta A, Ganguli R, Sarkar L (2010) Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation. Energy 35:341–350CrossRef Datta A, Ganguli R, Sarkar L (2010) Energy and exergy analyses of an externally fired gas turbine (EFGT) cycle integrated with biomass gasifier for distributed power generation. Energy 35:341–350CrossRef
Zurück zum Zitat Fernández AG, Galleguillos H, Fuentealba E, Pérez FJ (2015) Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology. J Therm Anal Calorim 122(1):3–9CrossRef Fernández AG, Galleguillos H, Fuentealba E, Pérez FJ (2015) Thermal characterization of HITEC molten salt for energy storage in solar linear concentrated technology. J Therm Anal Calorim 122(1):3–9CrossRef
Zurück zum Zitat Ganguly A, De RK (2018) Conceptual design and performance analysis of a parabolic trough collector supported multi-commodity cold storage. Mater Sci Eng 402(1):012049 Ganguly A, De RK (2018) Conceptual design and performance analysis of a parabolic trough collector supported multi-commodity cold storage. Mater Sci Eng 402(1):012049
Zurück zum Zitat Garud SS (2015) Rural electrification: challenges and the way ahead. Power Watch India, Princeton Garud SS (2015) Rural electrification: challenges and the way ahead. Power Watch India, Princeton
Zurück zum Zitat Ghosh S (2018) Biomass-based distributed energy systems: opportunities and challenges. In: Gautam A, De S, Dhar A, Gupta JG, Pandey A (eds) Sustainable energy and transportation. Springer, Singapore, pp 235–252CrossRef Ghosh S (2018) Biomass-based distributed energy systems: opportunities and challenges. In: Gautam A, De S, Dhar A, Gupta JG, Pandey A (eds) Sustainable energy and transportation. Springer, Singapore, pp 235–252CrossRef
Zurück zum Zitat Goswami Y (1986) Biomass gasification, chapter no. 4 in book “alternative energy in agriculture”, vol II, D edn. CRC Press, Boca Raton, pp 83–102 Goswami Y (1986) Biomass gasification, chapter no. 4 in book “alternative energy in agriculture”, vol II, D edn. CRC Press, Boca Raton, pp 83–102
Zurück zum Zitat Jarungthammachote S, Dutta A (2007) Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy 32(9):1660–1669CrossRef Jarungthammachote S, Dutta A (2007) Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy 32(9):1660–1669CrossRef
Zurück zum Zitat Kamalapur GD, Karjagi SB, Udaykumar RY (2007) Strategies for sustainable rural electrification in Indian context. J Electr Syst 3(1):39–47 Kamalapur GD, Karjagi SB, Udaykumar RY (2007) Strategies for sustainable rural electrification in Indian context. J Electr Syst 3(1):39–47
Zurück zum Zitat Kearney D, Kelly B, Cable R, Potrovitza N, Herrmann U, Nava P, Mahoney R, Pacheco J, Blake D, Price H (2003) Overview on use of a Molten Salt HTF in a trough solar field. In: NREL parabolic trough thermal energy storage workshop Kearney D, Kelly B, Cable R, Potrovitza N, Herrmann U, Nava P, Mahoney R, Pacheco J, Blake D, Price H (2003) Overview on use of a Molten Salt HTF in a trough solar field. In: NREL parabolic trough thermal energy storage workshop
Zurück zum Zitat Khanmohammadi S, Atashkari K, Kouhikamali R (2015) Exergoeconomic multi-objective optimization of an externally fired gas turbine integrated with a biomass gasifier. Appl Therm Eng 91:848–859CrossRef Khanmohammadi S, Atashkari K, Kouhikamali R (2015) Exergoeconomic multi-objective optimization of an externally fired gas turbine integrated with a biomass gasifier. Appl Therm Eng 91:848–859CrossRef
Zurück zum Zitat Lamidi RO, Jiang L, Wang Y, Pathare PB, Aguilar MC, Wang R, Eshoul NM, Roskilly AP (2019a) Techno-economic analysis of a cogeneration system for post-harvest loss reduction: a case study in sub-saharan rural community. Energies 12(5):872CrossRef Lamidi RO, Jiang L, Wang Y, Pathare PB, Aguilar MC, Wang R, Eshoul NM, Roskilly AP (2019a) Techno-economic analysis of a cogeneration system for post-harvest loss reduction: a case study in sub-saharan rural community. Energies 12(5):872CrossRef
Zurück zum Zitat Lamidi RO, Jiang L, Wang YD, Pathare PB, Roskilly AP (2019b) Techno-economic analysis of a biogas driven poly-generation system for postharvest loss reduction in a Sub-Saharan African rural community. Energy Convers Manag 196:591–604CrossRef Lamidi RO, Jiang L, Wang YD, Pathare PB, Roskilly AP (2019b) Techno-economic analysis of a biogas driven poly-generation system for postharvest loss reduction in a Sub-Saharan African rural community. Energy Convers Manag 196:591–604CrossRef
Zurück zum Zitat Melgar A, Pérez JF, Laget H, Horillo A (2007) Thermochemical equilibrium modelling of a gasifying process. Energy Convers Manag 48(1):59–67CrossRef Melgar A, Pérez JF, Laget H, Horillo A (2007) Thermochemical equilibrium modelling of a gasifying process. Energy Convers Manag 48(1):59–67CrossRef
Zurück zum Zitat Mendiburu AZ, Carvalho JA Jr, Coronado CJR (2014) Thermochemical equilibrium modeling of biomass downdraft gasifier: stoichiometric models. Energy 66:189–201CrossRef Mendiburu AZ, Carvalho JA Jr, Coronado CJR (2014) Thermochemical equilibrium modeling of biomass downdraft gasifier: stoichiometric models. Energy 66:189–201CrossRef
Zurück zum Zitat Meratizaman M, Monadizadeh S, Pourali O, Amidpour M (2015) High efficient-low emission power production from low BTU gas extracted from heavy fuel oil gasification, introduction of IGCC-SOFC process. J Nat Gas Sci Eng 23:1–15CrossRef Meratizaman M, Monadizadeh S, Pourali O, Amidpour M (2015) High efficient-low emission power production from low BTU gas extracted from heavy fuel oil gasification, introduction of IGCC-SOFC process. J Nat Gas Sci Eng 23:1–15CrossRef
Zurück zum Zitat Mohammadi A, Kasaeian A, Pourfayaz F, Ahmadi MH (2017) Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system. Appl Therm Eng 111:397–406CrossRef Mohammadi A, Kasaeian A, Pourfayaz F, Ahmadi MH (2017) Thermodynamic analysis of a combined gas turbine, ORC cycle and absorption refrigeration for a CCHP system. Appl Therm Eng 111:397–406CrossRef
Zurück zum Zitat Mondal P, Ghosh S (2017a) Techno-economic performance evaluation of a direct biomass-fired combined cycle plant employing air turbine. Clean Technol Environ Policy 19(2):427–436CrossRef Mondal P, Ghosh S (2017a) Techno-economic performance evaluation of a direct biomass-fired combined cycle plant employing air turbine. Clean Technol Environ Policy 19(2):427–436CrossRef
Zurück zum Zitat Mondal P, Ghosh S (2017b) Exergo-economic analysis of a 1-MW biomass-based combined cycle plant with externally fired gas turbine cycle and supercritical organic Rankine cycle. Clean Technol Environ Policy 19(5):1475–1486CrossRef Mondal P, Ghosh S (2017b) Exergo-economic analysis of a 1-MW biomass-based combined cycle plant with externally fired gas turbine cycle and supercritical organic Rankine cycle. Clean Technol Environ Policy 19(5):1475–1486CrossRef
Zurück zum Zitat Nag PK (2008) Power plant engineering, 3rd edn. Tata McGraw-Hill Education, India Nag PK (2008) Power plant engineering, 3rd edn. Tata McGraw-Hill Education, India
Zurück zum Zitat O’Connor JP (2016) Off grid solar: a handbook for photovoltaics with lead-acid or lithium-ion batteries. CreateSpace Independent Publishing Platform, Scotts Valley O’Connor JP (2016) Off grid solar: a handbook for photovoltaics with lead-acid or lithium-ion batteries. CreateSpace Independent Publishing Platform, Scotts Valley
Zurück zum Zitat Parvez M, Khaliq A (2014) Exergy analysis of a syngas fuelled cogeneration cycle for combined production of power and refrigeration. Int J Exergy 14(1):1–21CrossRef Parvez M, Khaliq A (2014) Exergy analysis of a syngas fuelled cogeneration cycle for combined production of power and refrigeration. Int J Exergy 14(1):1–21CrossRef
Zurück zum Zitat Puig-Arnavat M, Bruno JC, Coronas A (2014) Modeling of trigeneration configurations based on biomass gasification and comparison of performance. Appl Energy 114:845–856CrossRef Puig-Arnavat M, Bruno JC, Coronas A (2014) Modeling of trigeneration configurations based on biomass gasification and comparison of performance. Appl Energy 114:845–856CrossRef
Zurück zum Zitat Purohit P, Chaturvedi V (2018) Biomass pellets for power generation in India: a techno-economic evaluation. Environ Sci Pollut Res 25(29):29614–29632CrossRef Purohit P, Chaturvedi V (2018) Biomass pellets for power generation in India: a techno-economic evaluation. Environ Sci Pollut Res 25(29):29614–29632CrossRef
Zurück zum Zitat Reddy VS, Panwar NL, Kaushik SC (2012) Exergetic analysis of a vapour compression refrigeration system with R134a, R143a, R152a, R404A, R407C, R410A, R502 and R507A. Clean Technol Environ Policy 14(1):47–53CrossRef Reddy VS, Panwar NL, Kaushik SC (2012) Exergetic analysis of a vapour compression refrigeration system with R134a, R143a, R152a, R404A, R407C, R410A, R502 and R507A. Clean Technol Environ Policy 14(1):47–53CrossRef
Zurück zum Zitat Roy D, Samanta S, Ghosh S (2019) Thermo-economic assessment of biomass gasification-based power generation system consists of solid oxide fuel cell, supercritical carbon dioxide cycle and indirectly heated air turbine. Clean Technol Environ Policy 21(4):827–845CrossRef Roy D, Samanta S, Ghosh S (2019) Thermo-economic assessment of biomass gasification-based power generation system consists of solid oxide fuel cell, supercritical carbon dioxide cycle and indirectly heated air turbine. Clean Technol Environ Policy 21(4):827–845CrossRef
Zurück zum Zitat Sahu AK, Shandilya AM, Bhardwaj SK (2013) Load forecasting of rural areas for rural electrification. Int J Adv Res Technol 2(2):1–7 Sahu AK, Shandilya AM, Bhardwaj SK (2013) Load forecasting of rural areas for rural electrification. Int J Adv Res Technol 2(2):1–7
Zurück zum Zitat Samanta S, Ghosh S (2016) A thermo-economic analysis of repowering of a 250 MW coal fired power plant through integration of Molten Carbonate Fuel Cell with carbon capture. Int J Greenhouse Gas Control 51:48–55CrossRef Samanta S, Ghosh S (2016) A thermo-economic analysis of repowering of a 250 MW coal fired power plant through integration of Molten Carbonate Fuel Cell with carbon capture. Int J Greenhouse Gas Control 51:48–55CrossRef
Zurück zum Zitat Samanta S, Ghosh S (2017) Techno-economic assessment of a repowering scheme for a coal fired power plant through upstream integration of SOFC and downstream integration of MCFC. Int J Greenhouse Gas Control 64:234–245CrossRef Samanta S, Ghosh S (2017) Techno-economic assessment of a repowering scheme for a coal fired power plant through upstream integration of SOFC and downstream integration of MCFC. Int J Greenhouse Gas Control 64:234–245CrossRef
Zurück zum Zitat Singh SN (2006) Electrical load survey & load forecast for a stand alone small hydropower station. Himalayan small hydropower summit (October 12–13, 2006), Dehradun, pp 301–306 Singh SN (2006) Electrical load survey & load forecast for a stand alone small hydropower station. Himalayan small hydropower summit (October 12–13, 2006), Dehradun, pp 301–306
Zurück zum Zitat Wang J, Mao T, Sui J, Jin H (2015) Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas. Energy 93:801–815CrossRef Wang J, Mao T, Sui J, Jin H (2015) Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas. Energy 93:801–815CrossRef
Zurück zum Zitat Wimer JG, Summers WM (2011) Quality guideline for energy system studies: cost estimation methodology for NETL assessments of power plant performance (no. DOE/NETL-2011/1455). National Energy Technology Laboratory (NETL), AlbanyCrossRef Wimer JG, Summers WM (2011) Quality guideline for energy system studies: cost estimation methodology for NETL assessments of power plant performance (no. DOE/NETL-2011/1455). National Energy Technology Laboratory (NETL), AlbanyCrossRef
Zurück zum Zitat Yamazaki T, Kozu H, Yamagata S, Murao N, Ohta S, Shiya S, Ohba T (2005) Effect of superficial velocity on tar from downdraft gasification of biomass. Energy Fuels 19(3):1186–1191CrossRef Yamazaki T, Kozu H, Yamagata S, Murao N, Ohta S, Shiya S, Ohba T (2005) Effect of superficial velocity on tar from downdraft gasification of biomass. Energy Fuels 19(3):1186–1191CrossRef
Zurück zum Zitat Zainal ZA, Ali R, Lean CH, Seetharamu KN (2001) Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers Manag 42(12):1499–1515CrossRef Zainal ZA, Ali R, Lean CH, Seetharamu KN (2001) Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers Manag 42(12):1499–1515CrossRef
Metadaten
Titel
Techno-economic assessment of a biomass-based combined power and cooling plant for rural application
verfasst von
Suman Chattopadhyay
Sudip Ghosh
Publikationsdatum
12.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 4/2020
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-020-01832-z

Weitere Artikel der Ausgabe 4/2020

Clean Technologies and Environmental Policy 4/2020 Zur Ausgabe