Skip to main content

2024 | OriginalPaper | Buchkapitel

The Net Zero Goal and Sustainability: Significance of Green Hydrogen Economy in Valorization of CO2, Biomass and Plastic Waste into Chemicals and Materials

verfasst von : Ganapati D. Yadav

Erschienen in: Climate Action and Hydrogen Economy

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Net zero is a massive plan to constrain the global temperature rise to less than 1.5 °C whereby annual GHG emissions must be reduced from ~36.6 Gt to less than 10 Gt by using non-carbon renewable energy sources. Green hydrogen will play a huge role in transforming C1 off gases like CO2 into valuable chemicals and materials. Both blue and green hydrogen will contribute about 24% in the renewables totaling to about 539 to 820 MMTA in 2050. (Waste) Biomass will be transformed into fuels, chemicals and materials using hydrogen and oxygen derived from water splitting. Waste plastic can be chemically recycled into several hydrocarbons and depolymerized into monomers using different techniques, and hydrogenation will be very effective in tackling plastic pollution. Hydrogen is a key component in converting waste to wealth. Green hydrogen is poised to be a savior of the world. The concept of CO2 refinery is discussed, and use of biomass and plastic waste toward hydrogen economy is described.
Learning objectives:
  • Significance of green hydrogen economy in achieving net zero
  • Green ammonia and CO2
  • as future fuels for sustainability
  • Chemical recycling approaches of producing fuel from waste and plastics
  • Cost-effective green hydrogen production at the ICT, Mumbai, India

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat Yadav VG, Yadav GD, Patankar SC (2020) The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. Clean Tech Environ. Policy 22:1757–1774 Yadav VG, Yadav GD, Patankar SC (2020) The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. Clean Tech Environ. Policy 22:1757–1774
10.
Zurück zum Zitat Yadav GD (2023) In pursuit of the net zero goal and sustainability: hydrogen economy, carbon dioxide refineries, and valorization of biomass & waste plastic. AsiaChem (3):110–123 Yadav GD (2023) In pursuit of the net zero goal and sustainability: hydrogen economy, carbon dioxide refineries, and valorization of biomass & waste plastic. AsiaChem (3):110–123
12.
Zurück zum Zitat Yadav GD (2021) The case for hydrogen economy. Curr Sci 120:971–972 Yadav GD (2021) The case for hydrogen economy. Curr Sci 120:971–972
21.
Zurück zum Zitat Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118(2):434–504CrossRef Artz J, Müller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W (2018) Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem Rev 118(2):434–504CrossRef
22.
Zurück zum Zitat Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387CrossRef Sakakura T, Choi J-C, Yasuda H (2007) Transformation of carbon dioxide. Chem Rev 107(6):2365–2387CrossRef
23.
Zurück zum Zitat Samanta S, Srivastava R (2020) Catalytic conversion of CO2 to chemicals and fuels: the collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride Mater. Adv 1:1506–1545 Samanta S, Srivastava R (2020) Catalytic conversion of CO2 to chemicals and fuels: the collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride Mater. Adv 1:1506–1545
24.
Zurück zum Zitat Aresta M (2007) Carbon dioxide utilization: chemical, biological and technological applications. In: Greenhouse gases: mitigation and utilization, CHEMRAWN-XVII and ICCDU-IX, Kingston, Canada, Buncel, E., Ed. Kingston, Canada, pp 123–149 Aresta M (2007) Carbon dioxide utilization: chemical, biological and technological applications. In: Greenhouse gases: mitigation and utilization, CHEMRAWN-XVII and ICCDU-IX, Kingston, Canada, Buncel, E., Ed. Kingston, Canada, pp 123–149
25.
Zurück zum Zitat DOE/OS-FE (1999) Carbon Sequestration. State of the Science. Office of Science and Office of Fossil Energy, U.S. DOE DOE/OS-FE (1999) Carbon Sequestration. State of the Science. Office of Science and Office of Fossil Energy, U.S. DOE
26.
Zurück zum Zitat Weimer T, Schaber K, Specht M, Bandi A (1996) Comparison of CO2-sources for fuel synthesis. Am Chem Soc Div Fuel Chem Prepr 41(4):1337–1340 Weimer T, Schaber K, Specht M, Bandi A (1996) Comparison of CO2-sources for fuel synthesis. Am Chem Soc Div Fuel Chem Prepr 41(4):1337–1340
27.
Zurück zum Zitat Peters M, Kçhler B, Kuckshinrichs W, Leitner W, Markewitz P, Mller TE (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain. Chemsuschem 4:1216–1240CrossRef Peters M, Kçhler B, Kuckshinrichs W, Leitner W, Markewitz P, Mller TE (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain. Chemsuschem 4:1216–1240CrossRef
28.
Zurück zum Zitat DOE/FE (1999) Capturing Carbon Dioxide. Office of Fossil Energy, U.S. DOE DOE/FE (1999) Capturing Carbon Dioxide. Office of Fossil Energy, U.S. DOE
29.
Zurück zum Zitat Maeda C, Miyazaki Y, Ema T (2014) Recent progress in catalytic conversions of carbon dioxide, Catal. Sci Technol 4:1482–1497 Maeda C, Miyazaki Y, Ema T (2014) Recent progress in catalytic conversions of carbon dioxide, Catal. Sci Technol 4:1482–1497
30.
Zurück zum Zitat Song C, Wei P, Srimat ST,, Zheng J, Li Y, Wang Y-H, Xu B-Q, Zhu Q-M (2004) Tri-reforming of Methane over Ni Catalysts for CO2 conversion to syngas with desired H2/CO ratios using flue gas of power plants without CO2 separation. Stu Surf Sci Cat 153:315–322 Song C, Wei P, Srimat ST,, Zheng J, Li Y, Wang Y-H, Xu B-Q, Zhu Q-M (2004) Tri-reforming of Methane over Ni Catalysts for CO2 conversion to syngas with desired H2/CO ratios using flue gas of power plants without CO2 separation. Stu Surf Sci Cat 153:315–322
31.
Zurück zum Zitat Habisreutinger SN, Schmidt-Mende L, Stolarczyk J (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:2–39CrossRef Habisreutinger SN, Schmidt-Mende L, Stolarczyk J (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed 52:2–39CrossRef
32.
Zurück zum Zitat Hu B, Guild C, Suib SL (2013) Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J CO2 Util 1:18–27 Hu B, Guild C, Suib SL (2013) Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products. J CO2 Util 1:18–27
33.
Zurück zum Zitat Costentin C, Robert M (2013) Saveant, Catalysis of the electrochemical reduction of carbon dioxide. J Chem Soc Rev 42:2423–2436CrossRef Costentin C, Robert M (2013) Saveant, Catalysis of the electrochemical reduction of carbon dioxide. J Chem Soc Rev 42:2423–2436CrossRef
34.
Zurück zum Zitat Mondal U, Yadav GD (2021) Methanol economy and Net zero emissions: critical analysis of catalytic processes, reactors and technologies. Green Chem 23(21):8361–8405CrossRef Mondal U, Yadav GD (2021) Methanol economy and Net zero emissions: critical analysis of catalytic processes, reactors and technologies. Green Chem 23(21):8361–8405CrossRef
35.
Zurück zum Zitat Mondal U, Yadav GD (2019) Perspective of dimethyl ether as fuel: Part I. Catalysis. J CO2 Util 32:299–320 Mondal U, Yadav GD (2019) Perspective of dimethyl ether as fuel: Part I. Catalysis. J CO2 Util 32:299–320
36.
Zurück zum Zitat Mondal U, Yadav GD (2019) Perspective of dimethyl ether as fuel : Part II- analysis of reactor systems and industrial processes. J CO2 Util 32:321–338 Mondal U, Yadav GD (2019) Perspective of dimethyl ether as fuel : Part II- analysis of reactor systems and industrial processes. J CO2 Util 32:321–338
37.
Zurück zum Zitat Mondal U, Yadav GD (2022) Direct synthesis of dimethyl ether from CO2 hydrogenation over highly active, selective and stable catalyst containing Cu-ZnO-Al2O3/Al-Zr(1:1)-SBA-15 RSC reaction. Chem Eng 7:1391–1408 Mondal U, Yadav GD (2022) Direct synthesis of dimethyl ether from CO2 hydrogenation over highly active, selective and stable catalyst containing Cu-ZnO-Al2O3/Al-Zr(1:1)-SBA-15 RSC reaction. Chem Eng 7:1391–1408
38.
Zurück zum Zitat Ranjekar AM, Yadav GD (2021) Dry reforming of methane for syngas production: a review and assessment of catalyst development and efficacy. J Indian Chem Soc 98(1):100002CrossRef Ranjekar AM, Yadav GD (2021) Dry reforming of methane for syngas production: a review and assessment of catalyst development and efficacy. J Indian Chem Soc 98(1):100002CrossRef
39.
Zurück zum Zitat Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43:7813–7837CrossRef Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43:7813–7837CrossRef
40.
Zurück zum Zitat Tomishige K, Huber G, Wang T, Mizugaki T (2020) Catalytic conversion of biomass to fuels and chemicals, Fuel Process. Tech. Special Issue Tomishige K, Huber G, Wang T, Mizugaki T (2020) Catalytic conversion of biomass to fuels and chemicals, Fuel Process. Tech. Special Issue
41.
Zurück zum Zitat Sengupta D, Pike RW (2017), Chemicals from biomass. In: Chen W-Y, Suzuki T, Lackner M (eds), Handbook of climate change mitigation and adaptation. Springer Sengupta D, Pike RW (2017), Chemicals from biomass. In: Chen W-Y, Suzuki T, Lackner M (eds), Handbook of climate change mitigation and adaptation. Springer
43.
Zurück zum Zitat Seay JR, Chen W-T, Ternes ME (2020) Waste plastic: challenges and opportunities for the chemical industry. AIChE Chem Eng Prog, 22–29 Seay JR, Chen W-T, Ternes ME (2020) Waste plastic: challenges and opportunities for the chemical industry. AIChE Chem Eng Prog, 22–29
44.
Zurück zum Zitat Moriya T, Enomoto H (1999) Characteristics of polyethylene cracking in supercritical water compared to thermal cracking. Polym Degrad Stab 65(3):373–386CrossRef Moriya T, Enomoto H (1999) Characteristics of polyethylene cracking in supercritical water compared to thermal cracking. Polym Degrad Stab 65(3):373–386CrossRef
45.
Zurück zum Zitat Watanabe M, Hirakoso H, Sawamoto S, Adschiri T, Arai K (1998) Polyethylene conversion in supercritical water. J Supercritical Fluids 13(1–3):247–252CrossRef Watanabe M, Hirakoso H, Sawamoto S, Adschiri T, Arai K (1998) Polyethylene conversion in supercritical water. J Supercritical Fluids 13(1–3):247–252CrossRef
46.
Zurück zum Zitat Chen W-T, Jin K, Wang N-HL (2019) Use of supercritical water for the liquefaction of polypropylene into oil. ACS Sustain Chem Eng 7(4):3749–3758CrossRef Chen W-T, Jin K, Wang N-HL (2019) Use of supercritical water for the liquefaction of polypropylene into oil. ACS Sustain Chem Eng 7(4):3749–3758CrossRef
47.
Zurück zum Zitat Jin K, Vozka P, Kilaz G, Chen W-T, Wang N-HL (2020) Conversion of polyethylene waste into clean fuels and waxes via hydrothermal processing (HTP). Fuel 273:117726CrossRef Jin K, Vozka P, Kilaz G, Chen W-T, Wang N-HL (2020) Conversion of polyethylene waste into clean fuels and waxes via hydrothermal processing (HTP). Fuel 273:117726CrossRef
48.
Zurück zum Zitat Seshasayee MS, Savage PE (2020) Oil from plastic via hydrothermal liquefaction: production and characterization. Appl Energy 278:115673CrossRef Seshasayee MS, Savage PE (2020) Oil from plastic via hydrothermal liquefaction: production and characterization. Appl Energy 278:115673CrossRef
Metadaten
Titel
The Net Zero Goal and Sustainability: Significance of Green Hydrogen Economy in Valorization of CO2, Biomass and Plastic Waste into Chemicals and Materials
verfasst von
Ganapati D. Yadav
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-6237-2_4