Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 1/2016

25.06.2015 | Original Paper

The purification of fermentatively produced hydrogen using membrane technology: a simulation based on small-scale pilot plant results

verfasst von: Tino Lassmann, Martin Miltner, Michael Harasek, Aleksander Makaruk, Walter Wukovits, Anton Friedl

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen is known as one of the most promising energy carriers of the future. Its production in a sustainable manner is therefore an important step towards a competitive alternative to fossil energy sources. Dark fermentation is such a sustainable pathway, as hydrogen is produced via biotechnological conversion of biomass. But, the resulting hydrogen-rich gas from fermentation still needs to be upgraded, which can be done via membrane technology. In this work, an innovative small-scale process was developed, membrane modules were assembled and tested, and the purification method was simulatively investigated. The laboratory tests with pure gases showed that the utilized commercially available H2-selective membranes have an ideal H2/CO2-selectivity of 3.3, at the respective process conditions. When applying gas mixtures, the H2/CO2-selectivity was reduced. To further investigate the purification method, an Aspen Plus® gas permeation simulation model was used. The single-stage model was evaluated and it reflected the results from field and laboratory tests well. Furthermore, three different multi-stage setups were developed, simulated, and analyzed. The utilization of H2-selective material in a two-stage process resulted in a specific energy demand of 0.400 kWh/Nm3H2, but achieved no sufficient hydrogen purity. Compared to that, the use of CO2-selective membranes demanded only 0.296 kWh/Nm3H2. The recycle to feed ratio, as well as the H2-puriy of 95.5 vol% in the product was also in favor of the CO2-selective membranes compared to the commercially available H2-selective material.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adhikari S, Fernando S (2006) Hydrogen membrane separation techniques. Ind Eng Chem Res 45(3):875–881CrossRef Adhikari S, Fernando S (2006) Hydrogen membrane separation techniques. Ind Eng Chem Res 45(3):875–881CrossRef
Zurück zum Zitat Al-Shorgani NKN, Tibin EM, Ali E, Hamid AA, Yusoff WMW, Kalil MS (2014) Biohydrogen production from agroindustrial wastes via Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Clean Technology and Environmental Policy 16:11–21CrossRef Al-Shorgani NKN, Tibin EM, Ali E, Hamid AA, Yusoff WMW, Kalil MS (2014) Biohydrogen production from agroindustrial wastes via Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). Clean Technology and Environmental Policy 16:11–21CrossRef
Zurück zum Zitat Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173CrossRef Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173CrossRef
Zurück zum Zitat Bakonyi P, Kumar G, Nemestóthy N, Lin CY, Bèlafi-Bakó K (2013) Biohydrogen purification using a commercial polyimide membrane module: studying the effects of some process variables. Int J Hydrog Energy 38:15092–15099CrossRef Bakonyi P, Kumar G, Nemestóthy N, Lin CY, Bèlafi-Bakó K (2013) Biohydrogen purification using a commercial polyimide membrane module: studying the effects of some process variables. Int J Hydrog Energy 38:15092–15099CrossRef
Zurück zum Zitat Balat H, Kirtay E (2010) Hydrogen from biomass—present scenario and future prospects. Int J Hydrog Energy 35:7416–7426 Balat H, Kirtay E (2010) Hydrogen from biomass—present scenario and future prospects. Int J Hydrog Energy 35:7416–7426
Zurück zum Zitat Bossel U (2006) Does a Hydrogen Economy Make Sense? Proc IEEE 94(10):1826–1837CrossRef Bossel U (2006) Does a Hydrogen Economy Make Sense? Proc IEEE 94(10):1826–1837CrossRef
Zurück zum Zitat Car A, Stropnik C, Yave W, Peinemann KV (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95CrossRef Car A, Stropnik C, Yave W, Peinemann KV (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95CrossRef
Zurück zum Zitat Chaubey R, Sahu S, James OO, Maity S (2013) A review on development of industrial processes emerging techniques for production of hydrogen from renewable and sustainalbe sources. Renew Suast Energy Rev 23:443–462CrossRef Chaubey R, Sahu S, James OO, Maity S (2013) A review on development of industrial processes emerging techniques for production of hydrogen from renewable and sustainalbe sources. Renew Suast Energy Rev 23:443–462CrossRef
Zurück zum Zitat Dalebrook AF, Gan W, Grasemann M, Moret S, Laurenczy G (2013) Hydrogen storage: beyond conventional methods. Chem Commun 49:8735–8751CrossRef Dalebrook AF, Gan W, Grasemann M, Moret S, Laurenczy G (2013) Hydrogen storage: beyond conventional methods. Chem Commun 49:8735–8751CrossRef
Zurück zum Zitat Ehret O, Bonhoff K (2015) Hydrogen as a fuel and energy storage: success factors for the German Energiewende. Int J Hydrog Energy 40:5526–5533CrossRef Ehret O, Bonhoff K (2015) Hydrogen as a fuel and energy storage: success factors for the German Energiewende. Int J Hydrog Energy 40:5526–5533CrossRef
Zurück zum Zitat Foglia D, Wukovits W, Friedl A, Ljunggren M, Zacchi G, Urbaniec K, Markowski M (2011) Effects of feed stock on the process integration of biohydrogen production. Clean Technol Environ Policy J 13:547–558. doi:10.1007/s10098-011-0351-7 CrossRef Foglia D, Wukovits W, Friedl A, Ljunggren M, Zacchi G, Urbaniec K, Markowski M (2011) Effects of feed stock on the process integration of biohydrogen production. Clean Technol Environ Policy J 13:547–558. doi:10.​1007/​s10098-011-0351-7 CrossRef
Zurück zum Zitat Kalamaras CM and Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. conference paper in energy, Hindawi Publishing Corporation, Article ID 690627. doi:10.1155/2013/690627 Kalamaras CM and Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. conference paper in energy, Hindawi Publishing Corporation, Article ID 690627. doi:10.​1155/​2013/​690627
Zurück zum Zitat Lestinsky P, Vecer M, Navratil P, Stehlik P (2015) The removal of CO2 from biogas using a laboratory PSA unit: design using breakthrough curves. Clean Technol Environ Policies J. doi:10.1007/s10098-015-0912-2 Lestinsky P, Vecer M, Navratil P, Stehlik P (2015) The removal of CO2 from biogas using a laboratory PSA unit: design using breakthrough curves. Clean Technol Environ Policies J. doi:10.​1007/​s10098-015-0912-2
Zurück zum Zitat Makaruk A, Harasek M (2009) Numerical algorithm for modelling multicomponent multipermeator systems. J Membr Sci 344:258–265CrossRef Makaruk A, Harasek M (2009) Numerical algorithm for modelling multicomponent multipermeator systems. J Membr Sci 344:258–265CrossRef
Zurück zum Zitat Makaruk A, Miltner M, Harasek M (2012) Membrane gas permeation in the upgrading of renewable hydrogen from biomass steam gasification gases. Appl Therm Eng 43:134–140CrossRef Makaruk A, Miltner M, Harasek M (2012) Membrane gas permeation in the upgrading of renewable hydrogen from biomass steam gasification gases. Appl Therm Eng 43:134–140CrossRef
Zurück zum Zitat Niesner J, Jecha D, Stehlik P (2013) Biogas upgrading techniques: state of art review in European region. Chem Eng Trans 35:517–522. doi:10.3303/CET1335086 Niesner J, Jecha D, Stehlik P (2013) Biogas upgrading techniques: state of art review in European region. Chem Eng Trans 35:517–522. doi:10.​3303/​CET1335086
Zurück zum Zitat Ren N, Li J, Li B, Wang Y, Liu S (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrog Energy 31(15):2147–2157. ISSN 0360-3199 Ren N, Li J, Li B, Wang Y, Liu S (2006) Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrog Energy 31(15):2147–2157. ISSN 0360-3199
Zurück zum Zitat Riis T, Hagen EF, Vie PJS, Ulleberg Ø (2006) Hydrogen production and storage. International Energy Agency (IEA), Paris Riis T, Hagen EF, Vie PJS, Ulleberg Ø (2006) Hydrogen production and storage. International Energy Agency (IEA), Paris
Zurück zum Zitat Rodrigues D (2009) Model development of a membrane gas permeation unit for the separation of hydrogen and carbon dioxide. Master Thesis, Vienna University of Technology, Vienna Rodrigues D (2009) Model development of a membrane gas permeation unit for the separation of hydrogen and carbon dioxide. Master Thesis, Vienna University of Technology, Vienna
Zurück zum Zitat Rom A, Wukovits W, Friedl A (2014) Development of a vacuum membrane distillation unit operation: from experimental data to a simulation model. Chem Eng Process 86:90–95CrossRef Rom A, Wukovits W, Friedl A (2014) Development of a vacuum membrane distillation unit operation: from experimental data to a simulation model. Chem Eng Process 86:90–95CrossRef
Zurück zum Zitat Saratale G, Saratale R, Chang JS (2013) Biohydrogen from renewable resources. In: Pandey A, Chang JS, Hallenbeck PC, Larroche C (eds) Biohydrogen. Elsevier Plc, London, pp 185–221CrossRef Saratale G, Saratale R, Chang JS (2013) Biohydrogen from renewable resources. In: Pandey A, Chang JS, Hallenbeck PC, Larroche C (eds) Biohydrogen. Elsevier Plc, London, pp 185–221CrossRef
Zurück zum Zitat Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev 13:167–178CrossRef Saxena RC, Adhikari DK, Goyal HB (2009) Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev 13:167–178CrossRef
Zurück zum Zitat Shao L, Low BT, Chung T, Greenberg AR (2009) Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci 327:18–31CrossRef Shao L, Low BT, Chung T, Greenberg AR (2009) Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci 327:18–31CrossRef
Zurück zum Zitat Sharma S, Ghoshal SK (2015) Hydrogen the future transportation fuel: from production to applications. Renew Sustain Energy Rev 43:1151–1158CrossRef Sharma S, Ghoshal SK (2015) Hydrogen the future transportation fuel: from production to applications. Renew Sustain Energy Rev 43:1151–1158CrossRef
Zurück zum Zitat Uddin MN, Daud WW (2014) Technological diversity and economics: coupling effects on hydrogen production from biomass. Energy Fuels 28(7):4300–4320. doi:10.1021/ef5007808 CrossRef Uddin MN, Daud WW (2014) Technological diversity and economics: coupling effects on hydrogen production from biomass. Energy Fuels 28(7):4300–4320. doi:10.​1021/​ef5007808 CrossRef
Zurück zum Zitat Urbaniec K, Bakker RR (2015) Biomass residues as raw material for dark hydrogen fermentation—a review. Int J Hydrog Energy 40:3648–3658CrossRef Urbaniec K, Bakker RR (2015) Biomass residues as raw material for dark hydrogen fermentation—a review. Int J Hydrog Energy 40:3648–3658CrossRef
Zurück zum Zitat Zhang Z-P, Show K-Y, Tay J-H, Liang DT, Lee D-J, Jiang WJ (2006) Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41(10):2118–2123CrossRef Zhang Z-P, Show K-Y, Tay J-H, Liang DT, Lee D-J, Jiang WJ (2006) Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41(10):2118–2123CrossRef
Metadaten
Titel
The purification of fermentatively produced hydrogen using membrane technology: a simulation based on small-scale pilot plant results
verfasst von
Tino Lassmann
Martin Miltner
Michael Harasek
Aleksander Makaruk
Walter Wukovits
Anton Friedl
Publikationsdatum
25.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 1/2016
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-015-0997-7

Weitere Artikel der Ausgabe 1/2016

Clean Technologies and Environmental Policy 1/2016 Zur Ausgabe

Awards

Awards