Skip to main content
Erschienen in: Journal of Intelligent Information Systems 1/2012

01.02.2012

Wavelet ridges for musical instrument classification

verfasst von: M. Erdal Özbek, Nalan Özkurt, F. Acar Savacı

Erschienen in: Journal of Intelligent Information Systems | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The time-varying frequency structure of musical signals have been analyzed using wavelets by either extracting the instantaneous frequency of signals or building features from the energies of sub-band coefficients. We propose to benefit from a combination of these two approaches and use the time-frequency domain energy localization curves, called as wavelet ridges, in order to build features for classification of musical instrument sounds. We evaluated the representative capability of our feature in different musical instrument classification problems using support vector machine classifiers. The comparison with the features based on parameterizing the wavelet sub-band energies confirmed the effectiveness of the proposed feature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Beauchamp, J. W. (ed) (2007). Analysis, synthesis, and perception of musical sounds. Springer. Beauchamp, J. W. (ed) (2007). Analysis, synthesis, and perception of musical sounds. Springer.
Zurück zum Zitat Boashash, B. (1992). Estimating and interpreting the instantaneous frequency of a signal - Part I: Fundamentals. Proceedings of the IEEE, 80(4), 520–538.CrossRef Boashash, B. (1992). Estimating and interpreting the instantaneous frequency of a signal - Part I: Fundamentals. Proceedings of the IEEE, 80(4), 520–538.CrossRef
Zurück zum Zitat Carmona, R. A., Hwang, W. L., & Torrésani, B. (1997). Characterization of signals by the ridges of their wavelet transforms. IEEE Transactions on Signal Processing, 45(10), 2586–2590.CrossRef Carmona, R. A., Hwang, W. L., & Torrésani, B. (1997). Characterization of signals by the ridges of their wavelet transforms. IEEE Transactions on Signal Processing, 45(10), 2586–2590.CrossRef
Zurück zum Zitat Carmona, R. A., Hwang, W. L., & Torrésani, B. (1999). Multiridge detection and time-frequency reconstruction. IEEE Transactions on Signal Processing, 47(2), 480–492.CrossRef Carmona, R. A., Hwang, W. L., & Torrésani, B. (1999). Multiridge detection and time-frequency reconstruction. IEEE Transactions on Signal Processing, 47(2), 480–492.CrossRef
Zurück zum Zitat Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge University Press. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines. Cambridge University Press.
Zurück zum Zitat Dai, Y., Ma, Q., & Tang, W. (2008). Efficient wavelet ridge extraction method for asymptotic signal analysis. Review of Scientific Instruments, 79, 124703. doi:10.1063/1.3036984.CrossRef Dai, Y., Ma, Q., & Tang, W. (2008). Efficient wavelet ridge extraction method for asymptotic signal analysis. Review of Scientific Instruments, 79, 124703. doi:10.​1063/​1.​3036984.CrossRef
Zurück zum Zitat Delprat, N. (1997). Global frequency modulation laws extraction from the Gabor transform of a signal: A first study of the interacting components case. IEEE Transactions on Speech and Audio Processing, 5(1), 64–71.CrossRef Delprat, N. (1997). Global frequency modulation laws extraction from the Gabor transform of a signal: A first study of the interacting components case. IEEE Transactions on Speech and Audio Processing, 5(1), 64–71.CrossRef
Zurück zum Zitat Delprat, N., Escudié, B., Guillemain, P., Kronland-Martinet, R., Tchamitchian, P., & Torrésani, B. (1992). Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies. IEEE Transactions on Information Theory, 38(2), 644–664.CrossRefMATH Delprat, N., Escudié, B., Guillemain, P., Kronland-Martinet, R., Tchamitchian, P., & Torrésani, B. (1992). Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies. IEEE Transactions on Information Theory, 38(2), 644–664.CrossRefMATH
Zurück zum Zitat Deng, J. D., Simmermacher, C., & Cranefield, S. (2008). A study on feature analysis for musical instrument classification. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 38(2), 429–438.CrossRef Deng, J. D., Simmermacher, C., & Cranefield, S. (2008). A study on feature analysis for musical instrument classification. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, 38(2), 429–438.CrossRef
Zurück zum Zitat Do, M. N., & Vetterli, M. (2002). Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing, 11, 146–158.CrossRefMathSciNet Do, M. N., & Vetterli, M. (2002). Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing, 11, 146–158.CrossRefMathSciNet
Zurück zum Zitat Essid, S., Richard, G., & David, B. (2006). Instrument recognition in polyphonic music based on automatic taxonomies. IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 68–80.CrossRef Essid, S., Richard, G., & David, B. (2006). Instrument recognition in polyphonic music based on automatic taxonomies. IEEE Transactions on Audio, Speech, and Language Processing, 14(1), 68–80.CrossRef
Zurück zum Zitat Every, M. R., & Szymanski, J. E. (2006). Separation of synchronous pitched notes by special filtering of harmonics. IEEE Transactions on Audio, Speech, and Language Processing, 14(5), 1845–1856.CrossRef Every, M. R., & Szymanski, J. E. (2006). Separation of synchronous pitched notes by special filtering of harmonics. IEEE Transactions on Audio, Speech, and Language Processing, 14(5), 1845–1856.CrossRef
Zurück zum Zitat Goodwin, M., & Vetterli, M. (1996). Time-frequency signal models for music analysis, transformation, and synthesis. In Proc. of the IEEE-SP international symposium on time-frequency and time-scale analysis (pp 133–136). Goodwin, M., & Vetterli, M. (1996). Time-frequency signal models for music analysis, transformation, and synthesis. In Proc. of the IEEE-SP international symposium on time-frequency and time-scale analysis (pp 133–136).
Zurück zum Zitat Guillemain, P., & Kronland-Martinet, R. (1996). Characterization of acoustic signals through continuous linear time-frequency representations. Proceedings of the IEEE, 84(4), 561–585.CrossRef Guillemain, P., & Kronland-Martinet, R. (1996). Characterization of acoustic signals through continuous linear time-frequency representations. Proceedings of the IEEE, 84(4), 561–585.CrossRef
Zurück zum Zitat Hacıhabiboğlu, H., & Canagarajah, C. N. (2002). Musical instrument recognition with wavelet envelopes. In Proc. forum acusticum Sevilla. Sevilla, Spain. Hacıhabiboğlu, H., & Canagarajah, C. N. (2002). Musical instrument recognition with wavelet envelopes. In Proc. forum acusticum Sevilla. Sevilla, Spain.
Zurück zum Zitat Herrera-Boyer, P., Peeters, G., & Dubnov, S. (2003). Automatic classification of musical instrument sounds. Journal of New Music Research, 32(1), 3–21.CrossRef Herrera-Boyer, P., Peeters, G., & Dubnov, S. (2003). Automatic classification of musical instrument sounds. Journal of New Music Research, 32(1), 3–21.CrossRef
Zurück zum Zitat Herrera-Boyer, P., Klapuri, A., & Davy, M. (2006). Automatic classification of pitched musical instrument sounds. In Signal processing methods for music transcription (pp. 163–200). Springer. Herrera-Boyer, P., Klapuri, A., & Davy, M. (2006). Automatic classification of pitched musical instrument sounds. In Signal processing methods for music transcription (pp. 163–200). Springer.
Zurück zum Zitat Klapuri, A., & Davy, M. (eds) (2006). Signal processing methods for music transcription. Springer. Klapuri, A., & Davy, M. (eds) (2006). Signal processing methods for music transcription. Springer.
Zurück zum Zitat Kostek, B. (2004). Musical instrument classification and duet analysis employing music information retrieval techniques. Proceedings of the IEEE, 92(4), 712–729.CrossRef Kostek, B. (2004). Musical instrument classification and duet analysis employing music information retrieval techniques. Proceedings of the IEEE, 92(4), 712–729.CrossRef
Zurück zum Zitat Kostek, B. (2005). Perception-based data processing in acoustics. Springer. Kostek, B. (2005). Perception-based data processing in acoustics. Springer.
Zurück zum Zitat Kostek, B., & Czyzewski, A. (2001). Representing musical instrument sounds for their automatic classification. Journal of Audio Engineering Society, 49(9), 768–785. Kostek, B., & Czyzewski, A. (2001). Representing musical instrument sounds for their automatic classification. Journal of Audio Engineering Society, 49(9), 768–785.
Zurück zum Zitat Kronland-Martinet, R. (1988). The wavelet transform for analysis, synthesis, and processing of speech and music sounds. Computer Music Journal, 12(4), 11–20.CrossRef Kronland-Martinet, R. (1988). The wavelet transform for analysis, synthesis, and processing of speech and music sounds. Computer Music Journal, 12(4), 11–20.CrossRef
Zurück zum Zitat Li, T., & Ogihara, M. (2006). Toward intelligent music information retrieval. IEEE Transactions on Multimedia, 8(3), 564–574.CrossRef Li, T., & Ogihara, M. (2006). Toward intelligent music information retrieval. IEEE Transactions on Multimedia, 8(3), 564–574.CrossRef
Zurück zum Zitat Lin, C. C., Chen, S. H., Truong, T. K., & Chang, Y. (2005). Audio classification and categorization based on wavelets and support vector machine. IEEE Transactions on Speech and Audio Processing, 13(5), 644–651.CrossRef Lin, C. C., Chen, S. H., Truong, T. K., & Chang, Y. (2005). Audio classification and categorization based on wavelets and support vector machine. IEEE Transactions on Speech and Audio Processing, 13(5), 644–651.CrossRef
Zurück zum Zitat Lin, J. (2006). Ridges reconstruction based on inverse wavelet transform. Journal of Sound and Vibration, 294, 916–926.CrossRef Lin, J. (2006). Ridges reconstruction based on inverse wavelet transform. Journal of Sound and Vibration, 294, 916–926.CrossRef
Zurück zum Zitat Mallat, S. G. (2009). A wavelet tour of signal processing: The sparse way (3rd edn). Academic Press. Mallat, S. G. (2009). A wavelet tour of signal processing: The sparse way (3rd edn). Academic Press.
Zurück zum Zitat Olmo, G., Dovis, F., Benotto, P., Calosso, C., & Passaro, P. (1999). Instrument-independent analysis of music by means of the continuous wavelet transform. In Proc. of the SPIE wavelet applications in signal and image processing VII (Vol. 3813, pp. 716–726). Denver, USA. Olmo, G., Dovis, F., Benotto, P., Calosso, C., & Passaro, P. (1999). Instrument-independent analysis of music by means of the continuous wavelet transform. In Proc. of the SPIE wavelet applications in signal and image processing VII (Vol. 3813, pp. 716–726). Denver, USA.
Zurück zum Zitat Özbek, M. E., & Savacı F. A. (2007). Music instrument classification using generalized Gaussian density modeling. In IEEE 15 th signal processing and communications applications conference. Eskişehir, Turkey. Özbek, M. E., & Savacı F. A. (2007). Music instrument classification using generalized Gaussian density modeling. In IEEE 15 th signal processing and communications applications conference. Eskişehir, Turkey.
Zurück zum Zitat Özbek, M. E., Delpha, C., & Duhamel, P. (2007). Musical note and instrument classification with likelihood-frequency-time analysis and support vector machines. In European signal processing conference (pp. 941–945). Poznań, Poland. Özbek, M. E., Delpha, C., & Duhamel, P. (2007). Musical note and instrument classification with likelihood-frequency-time analysis and support vector machines. In European signal processing conference (pp. 941–945). Poznań, Poland.
Zurück zum Zitat Özkurt, N., & Savacı, F. A. (2005). Determination of wavelet ridges of nonstationary signals by singular value decomposition. IEEE Transactions on Circuits and Systems-II: Express Briefs, 52(8), 480–485.CrossRef Özkurt, N., & Savacı, F. A. (2005). Determination of wavelet ridges of nonstationary signals by singular value decomposition. IEEE Transactions on Circuits and Systems-II: Express Briefs, 52(8), 480–485.CrossRef
Zurück zum Zitat Özkurt, N., & Savacı, F. A. (2006). Reconstruction of nonstationary signals along the wavelet ridges. International Journal of Bifurcation and Chaos, 16(1), 191–198.CrossRefMATH Özkurt, N., & Savacı, F. A. (2006). Reconstruction of nonstationary signals along the wavelet ridges. International Journal of Bifurcation and Chaos, 16(1), 191–198.CrossRefMATH
Zurück zum Zitat Pielemeier, W. J., Wakefield, G. H., & Simoni, M. H. (1996). Time-frequency analysis of musical signals. Proceedings of the IEEE, 84(9), 1216–1230.CrossRef Pielemeier, W. J., Wakefield, G. H., & Simoni, M. H. (1996). Time-frequency analysis of musical signals. Proceedings of the IEEE, 84(9), 1216–1230.CrossRef
Zurück zum Zitat Pruysers, C., Schnapp, J., & Kaminskyj, I. (2005). Wavelet analysis in musical instrument sound classification. In Proc. of the 8 th international symposium on signal processing and its applications (Vol. 1, pp. 1–4). Pruysers, C., Schnapp, J., & Kaminskyj, I. (2005). Wavelet analysis in musical instrument sound classification. In Proc. of the 8 th international symposium on signal processing and its applications (Vol. 1, pp. 1–4).
Zurück zum Zitat Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels. MIT Press. Schölkopf, B., & Smola, A. J. (2002). Learning with Kernels. MIT Press.
Zurück zum Zitat Sejdić, E., Djurović, I., & Jiang, J. (2009). Time-frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19, 153–183.CrossRef Sejdić, E., Djurović, I., & Jiang, J. (2009). Time-frequency feature representation using energy concentration: An overview of recent advances. Digital Signal Processing, 19, 153–183.CrossRef
Zurück zum Zitat Selesnick, I. W., Baraniuk, R. G., & Kingsbury, N. G. (2005). The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 22(6), 123–151.CrossRef Selesnick, I. W., Baraniuk, R. G., & Kingsbury, N. G. (2005). The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 22(6), 123–151.CrossRef
Zurück zum Zitat Shafi, I., Ahmad, J., Shah, S. I., & Kashif, F. M. (2009). Techniques to obtain good resolution and concentrated time-frequency distributions: A review. EURASIP Journal on Advances in Signal Processing, 2009(673539), 43. doi:10.1155/2009/673539. Shafi, I., Ahmad, J., Shah, S. I., & Kashif, F. M. (2009). Techniques to obtain good resolution and concentrated time-frequency distributions: A review. EURASIP Journal on Advances in Signal Processing, 2009(673539), 43. doi:10.​1155/​2009/​673539.
Zurück zum Zitat Shuai, X. F., & Yuan, X. (2006). Instantaneous frequency extraction via wavelet ridge. In IEEE international conference on communications, circuits and systems proceedings (Vol. 1, pp. 253–257). Shuai, X. F., & Yuan, X. (2006). Instantaneous frequency extraction via wavelet ridge. In IEEE international conference on communications, circuits and systems proceedings (Vol. 1, pp. 253–257).
Zurück zum Zitat Smith, L. M., & Honing, H. (2008). Time-frequency representation of musical rhythm by continuous wavelets. Journal of Mathematics and Music, 2(2), 81–97.CrossRefMATHMathSciNet Smith, L. M., & Honing, H. (2008). Time-frequency representation of musical rhythm by continuous wavelets. Journal of Mathematics and Music, 2(2), 81–97.CrossRefMATHMathSciNet
Zurück zum Zitat Todorovska, M. I. (2001). Estimation of instantaneous frequency of signals using the continuous wavelet transform. Tech. Rep. CE 01-07. University of Southern California, Los Angeles, California. Todorovska, M. I. (2001). Estimation of instantaneous frequency of signals using the continuous wavelet transform. Tech. Rep. CE 01-07. University of Southern California, Los Angeles, California.
Zurück zum Zitat Tse, N. C. F., & Lai, L. L. (2007). Wavelet-based algorithm for signal analysis. EURASIP Journal on Advances in Signal Processing, 2007(38916). doi:10.1155/2007/38916. Tse, N. C. F., & Lai, L. L. (2007). Wavelet-based algorithm for signal analysis. EURASIP Journal on Advances in Signal Processing, 2007(38916). doi:10.​1155/​2007/​38916.
Zurück zum Zitat Tzagkarakis, C., Mouchtaris, A., & Tsakalides, P. (2006). Musical genre classification via generalized Gaussian and alpha-stable modeling. In IEEE international conference on acoustics, speech, and signal processing (Vol. 5, pp. 217–220). Toulouse, France. Tzagkarakis, C., Mouchtaris, A., & Tsakalides, P. (2006). Musical genre classification via generalized Gaussian and alpha-stable modeling. In IEEE international conference on acoustics, speech, and signal processing (Vol. 5, pp. 217–220). Toulouse, France.
Zurück zum Zitat Tzanetakis, G., Essl, G., & Cook, P. (2001). Audio analysis using the discrete wavelet transform. In WSES international conference on acoustics and music: Theory and applications. Koukounaries, Greece. Tzanetakis, G., Essl, G., & Cook, P. (2001). Audio analysis using the discrete wavelet transform. In WSES international conference on acoustics and music: Theory and applications. Koukounaries, Greece.
Zurück zum Zitat Vapnik, V. N. (1998). Statistical learning theory. John Wiley and Sons. Vapnik, V. N. (1998). Statistical learning theory. John Wiley and Sons.
Zurück zum Zitat Vetterli, M., & Kovačević, J. (1995). Wavelets and subband coding. Prentice Hall. Vetterli, M., & Kovačević, J. (1995). Wavelets and subband coding. Prentice Hall.
Zurück zum Zitat Wieczorkowska, A. (2001). Musical sound classification based on wavelet analysis. Fundamenta Informaticae, 47, 175–188.MATH Wieczorkowska, A. (2001). Musical sound classification based on wavelet analysis. Fundamenta Informaticae, 47, 175–188.MATH
Zurück zum Zitat Wieczorkowska, A. A. (2010). Towards musical data classification via wavelet analysis. Lecture Notes in Computer Science, 1932, 147–165. Wieczorkowska, A. A. (2010). Towards musical data classification via wavelet analysis. Lecture Notes in Computer Science, 1932, 147–165.
Zurück zum Zitat Wieczorkowska, A. A., & Kubera, E. (2009). Identification of a dominating instrument in polytimbral same-pitch mixes using SVM classifiers with non-linear kernel. Journal of Intelligent Information Systems, doi:10.1007/s10844-009-0098-3. Wieczorkowska, A. A., & Kubera, E. (2009). Identification of a dominating instrument in polytimbral same-pitch mixes using SVM classifiers with non-linear kernel. Journal of Intelligent Information Systems, doi:10.​1007/​s10844-009-0098-3.
Zurück zum Zitat Wieczorkowska, A., & Kubik-Komar, A. (2010). Application of analysis of variance and post hoc comparisons to studying the discriminative power of sound parameters in distinguishing between musical instruments. Journal of Intelligent Information Systems. doi:10.1007/s10844-010-0140-5. Wieczorkowska, A., & Kubik-Komar, A. (2010). Application of analysis of variance and post hoc comparisons to studying the discriminative power of sound parameters in distinguishing between musical instruments. Journal of Intelligent Information Systems. doi:10.​1007/​s10844-010-0140-5.
Metadaten
Titel
Wavelet ridges for musical instrument classification
verfasst von
M. Erdal Özbek
Nalan Özkurt
F. Acar Savacı
Publikationsdatum
01.02.2012
Verlag
Springer US
Erschienen in
Journal of Intelligent Information Systems / Ausgabe 1/2012
Print ISSN: 0925-9902
Elektronische ISSN: 1573-7675
DOI
https://doi.org/10.1007/s10844-011-0152-9

Weitere Artikel der Ausgabe 1/2012

Journal of Intelligent Information Systems 1/2012 Zur Ausgabe

Premium Partner