skip to main content
article

Local, deformable precomputed radiance transfer

Published:01 July 2005Publication History
Skip Abstract Section

Abstract

Precomputed radiance transfer (PRT) captures realistic lighting effects from distant, low-frequency environmental lighting but has been limited to static models or precomputed sequences. We focus on PRT for local effects such as bumps, wrinkles, or other detailed features, but extend it to arbitrarily deformable models. Our approach applies zonal harmonics (ZH) which approximate spherical functions as sums of circularly symmetric Legendre polynomials around different axes. By spatially varying both the axes and coefficients of these basis functions, we can fit to spatially varying transfer signals. Compared to the spherical harmonic (SH) basis, the ZH basis yields a more compact approximation. More important, it can be trivially rotated whereas SH rotation is expensive and unsuited for dense per-vertex or per-pixel evaluation. This property allows, for the first time, PRT to be mapped onto deforming models which re-orient the local coordinate frame. We generate ZH transfer models by fitting to PRT signals simulated on meshes or simple parametric models for thin membranes and wrinkles. We show how shading with ZH transfer can be significantly accelerated by specializing to a given lighting environment. Finally, we demonstrate real-time rendering results with soft shadows, inter-reflections, and subsurface scatter on deforming models.

Skip Supplemental Material Section

Supplemental Material

pps098.mp4

mp4

40.3 MB

References

  1. Ashikhmin, M., and Shirley, P. 2002. Steerable illumination textures. ACM Trans. Gr. 2, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Choi, C., Ivanic, J., Gordon, M., and Ruedenberg, K. 1999. Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion. The Journal of Chemical Physics 111, 19 (November), 8825--8831.Google ScholarGoogle ScholarCross RefCross Ref
  3. Cook, R., and Torrance, K. 1982. A reflectance model for computer graphics. ACM Trans. Gr. 1, 1, 7--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dana, K., Nayar, S., Van Ginneken, B., and Koenderink, J. 1999. Reflectance and texture of real-world surfaces. ACM TOG 18, 1--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Driscoll, J., and Healy, D. 1994. Computing fourier transforms and convolutions on the 2-sphere. Adv. in Appl. Math. 15, 202--250. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fernando, R. 2004. GPU Gems: Programming Techniques. Tips, and Tricks for Real-Time Graphics. Addison-Weseley Professional. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Heidrich, W., Daubert, K., Kautz, J., and Seidel, H. 2000. Illuminating micro-geometry based on precomputed visibility. In Proc. SIGGRAPH '00, 455--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. James, D., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. In Proc. of SIGGRAPH '03, 879--887. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Kaneko, T., Takahei, T., Inami, M., Kawakami, M., Yanagida, Y., Maeda, T., and Tachi, S. 2001. Detailed shape representation with parallax mapping. In Proc. of ICAT 2001, 205--208.Google ScholarGoogle Scholar
  10. Kautz, J., Sloan, P., and Snyder, J. 2002. Fast, arbitrary brdf shading for low-frequency lighting using spherical harmonics. Eurographics Workshop on Rendering, 291--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kautz, J., Lehtinen, J., and Aila, T. 2004. Hemispherical rasterization for self-shadowing of dynamic objects. Proceedings Eurographics Symposium on Rendering, 179--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Lafortune, E., Foo, S., Torrance, K., and Greenberg, D. 1997. Nonlinear approximation of reflectance functions. In Proc. of SIGGRAPH '97, 117--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lensch, H., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H. 2001. Image-based reconstruction of spatially-varying materials. In EG Rendering Workshop, 103--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Liu, X., Sloan, P., Shum, H., and Snyder, J. 2004. All-frequency precomputed radiance transfer for glossy objects. In Proc. of 2004 Eurographics Symposium on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Malzbender, T., Gelb, D., and Wolters, H. 2001. Polynomial texture maps. In Proc. of SIGGRAPH '01, 519--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Max, N. 1988. Horizon mapping: shadows for bump-mapped surfaces. The Visual Computer 4, 2, 109--117.Google ScholarGoogle ScholarCross RefCross Ref
  17. McCallister, D., Lastra, A., and Heidrich, W. 2002. Efficient rendering of spatial bidirectional reflectance distribution functions. In Graphics Hardware '02, 171--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Meyer, A., and Neyret, F. 1998. Interactive volumetric textures. In Eurographics Workshop on Rendering, 157--168.Google ScholarGoogle Scholar
  19. Miller, G. 1994. Efficient algorithms for local and global accessibility shading. In Proc. of SIGGRAPH '94, 319--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Muller, G., Meseth, J., and Klein, R. 2004. Fast environmental lighting for local-pca encoded btfs. In Proc. of Computer Graphics International, 198--205. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency shadows using non-linear wavelet lighting approximation. In Proc. of SIGGRAPH '03, 376--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nocedal, J., and Wright, S. 1999. Numerical Optimization. Springer-Verlag.Google ScholarGoogle Scholar
  23. Oliveira, M., Bishop, G., and McCallister, D. 2000. Relief texture mapping. In Proc. of SIGGRAPH '00, 359--368. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. 1992. Numerical Recipes in C. Second Edition. Cambridge University Press, Cambridge, England. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ramamoorthi, R., and Hanrahan, P. 2001. An efficient representation for irradiance environment maps. In Proc. of SIGGRAPH '01, 497--500. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Shirley, P., and Chiu, K. 1997. A low distortion map between disk and square. Journal of Graphics Tools 2, 3, 45--52. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sloan, P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proc. of SIGGRAPH '02, 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sloan, P., Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for precomputed radiance transfer. In Proc. of SIGGRAPH '03, 382--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sloan, P., Liu, X., Shum, H., and Snyder, J. 2003. Bi-scale radiance transfer. In Proc. of SIGGRAPH '03, 370--375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wang, L., Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., and Shum, H. 2003. View-dependent displacement mapping. In Proc. of SIGGRAPH '03, 334--339. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wang, R., Tran, J., and Luebke, D. 2004. All-frequency relighting of non-diffuse objects using separable brdf approximation. In Proc. of 2004 Eurographics Symposium on Rendering. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Westin, S., Arvo, J., and Torrance, K. 1992. Predicting reflectance functions from complex surfaces. In Proc. of SIGGRAPH '92, 255--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Whittaker, E., and Watson, G. 1990. A Course in Modern Analysis, 4th Ed. Cambridge University Press, Cambridge, England.Google ScholarGoogle Scholar

Index Terms

  1. Local, deformable precomputed radiance transfer

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 24, Issue 3
          July 2005
          826 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1073204
          Issue’s Table of Contents

          Copyright © 2005 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 July 2005
          Published in tog Volume 24, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader