skip to main content
10.1145/1357054.1357096acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Video browsing by direct manipulation

Published:06 April 2008Publication History

ABSTRACT

We present a method for browsing videos by directly dragging their content. This method brings the benefits of direct manipulation to an activity typically mediated by widgets. We support this new type of interactivity by: 1) automatically extracting motion data from videos; and 2) a new technique called relative flow dragging that lets users control video playback by moving objects of interest along their visual trajectory. We show that this method can outperform the traditional seeker bar in video browsing tasks that focus on visual content rather than time.

Skip Supplemental Material Section

Supplemental Material

1357096.mp4

mp4

150.6 MB

References

  1. Accot, J. and Zhai, S. (1997). Beyond Fitts' law: models for trajectory-based HCI tasks. CHI. p. 295--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Appert, C. and Fekete, J. (2006). OrthoZoom scroller: 1D Multi-Scale Navigation. CHI. P. 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Autodesk Maya. http://www.autodesk.com/Google ScholarGoogle Scholar
  4. Baudel, T., Fitzmaurice, G., Buxton, W., Kurtenbach, G., Tappen, C. and Liepa, P. (2002). Drawing system using design guides. US Patent # 6,377,240.Google ScholarGoogle Scholar
  5. Beauchemin, S.S. and Barron, J.L. (1995). The computation of optical flow. ACM Computing Surveys, 27(3). p. 433--467. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Beaudouin-Lafon, M. (2000). Instrumental Interaction: An interaction model for designing post-WIMP user interfaces. CHI. p. 446--453. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Beaudouin-Lafon, M. (2001). Novel interaction techniques for overlapping windows. UIST. p. 153--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bezerianos, A., Dragicevic, P. and Balakrishnan, R. (2006). Mnemonic rendering: an image-based approach for exposing hidden changes in dynamic displays. UIST. p. 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Buxton, W. (1986). There's more to interaction than meets the eye: some issues in manual input. In User Centered System Design: New Perspectives on Human-Computer Interaction. Lawrence Erlbaum. p. 19--337.Google ScholarGoogle ScholarCross RefCross Ref
  10. Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8). p. 790--799. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Dragicevic, P., Huot, S. and Huot, S. (2002). SpiraC-lock: a continuous and non-intrusive display for up-coming events. CHI Extended Abstracts. p. 604--605. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Goldman, D.B., Curless, B., Salesin, D. and Seitz, S.M. (2006). Schematic storyboarding for video visualization and editing. SIGGRAPH. p. 862--871. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Guimbretière, F. (2000). FlowMenu: combining command, text, and data entry. UIST. p. 213--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hölzl, R. (1996). How does 'dragging' affect the learning of geometry? International Journal of Computers for Mathematical Learning, 1(2). p. 169--187.Google ScholarGoogle Scholar
  15. Hutchins, E.L., Hollan, J.D. and Norman, D.A. (1987). Direct manipulation interfaces. In Human-Computer interaction: A Multidisciplinary Approach. R. M. Baecker, Ed. Morgan Kaufmann. p. 468--470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Irani, M., Anadan, P. and Hsu, H. (1995). Mosaic based representations of video sequences and their applications. Intl. Conference on Computer Vision. p. 605--611. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kim, C. and Hwang, J. (2002). Fast and automatic video object segmentation and tracking for content-based applications. IEEE Trans. Circuits and Systems for Video Technology, 12. p. 122--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kimber D., Dunnigan, T., Girgensohn, A., Shipman, F., Turner, T. and Yang, T. (2007). Trailblazing: Video playback control by direct object manipulation. ICME. p. 1015--1018.Google ScholarGoogle Scholar
  19. Li, F.C., Gupta, A., Sanocki, E., He, L. and Rui, Y. (2000). Browsing digital video. CHI. p. 169--176. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lowe, D.G. (2004), Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2). p. 91--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Maier, D., Hesser, J. and Männer, R. (2003). Fast and accurate closest point search on triangulated surfaces and its application to motion estimation. WSEAS Intl. Conference on Signal, Speech and Image Processing.Google ScholarGoogle Scholar
  22. Moscovich, T., Hughes, J.F. (2004). Navigating Documents with the Virtual Scroll Ring. UIST. P. 57--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ngo, T., Cutrell, D., Dana, J., Donald, B., Loeb, L. and Zhu, S. (2000). Accessible animation and customizable graphics via simplicial configuration modeling. SIGGRAPH. p. 403--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Nowozin, S. autopano-sift -- Automatic panorama stitching package. http://user.cs.tu-berlin.de/~nowozin/autopano-sift/Google ScholarGoogle Scholar
  25. NTT-AT Dragri. http://www.dragri-fran.comGoogle ScholarGoogle Scholar
  26. Pack, C. and Mingolla E. (1998). Global induced motion and visual stability in an optic flow illusion. Vision Research, 38. p. 3083--3093.Google ScholarGoogle Scholar
  27. Peker, K.A., Divakaran, A. Sun, H. (2001). Constant pace skimming and temporal sub-sampling of video using motion activity. IEEE International Conference on Image Processing, Vol. 3. p. 41417.Google ScholarGoogle ScholarCross RefCross Ref
  28. Proteau, L. and Masson, G. (1997). Visual perception modifies goal-directed movement control: Supporting evidence from a visual perturbation paradigm. The Quarterly Journal of Experimental Psychology, 50, 726--741.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ramos, G. and Balakrishnan, R. (2003). Fluid interaction techniques for the control and annotation of digital video. UIST. p. 105--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Schneiderman, B. (1992). Designing the user interface: Effective strategies for effective human-computer interaction. Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Shim, C. and Chang, J. (2004). Trajectory-based video retrieval for multimedia information systems. Proc. ADVIS, LNCS 3261. p. 372--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Shoemake, K. (1992). ARCBALL: a user interface for specifying three-dimensional orientation using a mouse. Graphics Interface. p. 151--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sinha, S., Frahm, J.M. and Pollefeys M. (2006). GPU-based video feature tracking and matching. Tech. Rep. TR06-012, University of North Carolina at Chapel Hill.Google ScholarGoogle Scholar
  34. 34.Snavely, N., Seitz, S.M. and Szeliski, R. (2006). Photo tourism: exploring photo collections in 3D. ACM Transactions on Graphics, 25(3). p. 835-846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Su, C., Liao, I.M. and Fan, K. (2005). A motion-flow-based fast video retrieval system. ACM SIGMM International Workshop on Multimedia Information Retrieval. p. 105--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Taubin, G. (1995). Curve and surface smoothing without shrinkage. Intl. Conf. on Comp. Vision. p. 852. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Thorne, M., Burke, D. and van de Panne, M. (2004). Motion doodles: an interface for sketching character motion. SIGGRAPH. p. 424--431. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Truong, B.T. and Venkatesh, S. (2007). Video abstraction: A systematic review and classification. ACM Transactions on Multimedia Computing, Communications, and Applications, 3(1). p. 1--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wei, J. (2003). An efficient motion estimation,method for MPEG-4 video encoder. IEEE Transactions on Consumer Electronics, 49(2). p. 441--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Yilmaz, A., Javed, O. and Shah, M. (2006). Object tracking: A survey. ACM Computing Surveys, 38(4). p. 1--45. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Zivotofsky, A.Z. (2004). The Duncker illusion: inter-subject variability, brief exposure, and the role of eye movements in its generation. Investigative Ophthalmology and Visual Science, 45. p. 2867--2872.Google ScholarGoogle Scholar

Index Terms

  1. Video browsing by direct manipulation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '08: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
      April 2008
      1870 pages
      ISBN:9781605580111
      DOI:10.1145/1357054

      Copyright © 2008 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 6 April 2008

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '08 Paper Acceptance Rate157of714submissions,22%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader