skip to main content
10.1145/1599470.1599488acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

A point-based method for animating elastoplastic solids

Published:01 August 2009Publication History

ABSTRACT

In this paper we describe a point-based approach for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. The deformation gradient is computed for each particle by finding the affine transformation that best approximates the motion of neighboring particles over a single timestep. These transformations are then composed to compute the total deformation gradient that describes the deformation around a particle over the course of the simulation. Given the deformation gradient we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. We demonstrate our approach on a number of examples that exhibit a wide range of material behaviors.

References

  1. {APKG07} Adams B., Pauly M., Keiser R., Guibas L. J.: Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3 (2007), 48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. {BMF07} Bridson R., Müller-Fischer M.: Fluid simulation: Siggraph 2007 course notes. In ACM SIGGRAPH 2007 courses (2007), pp. 1--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. {BWHT07} Bargteil A. W., Wojtan C., Hodgins J. K., Turk G.: A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3 (2007), 16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. {CBP05} Clavet S., Beaudoin P., Poulin P.: Particle-based viscoelastic fluid simulation. In The Proccedings of the Symposium on Computer Animation (2005), pp. 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. {GBO04} Goktekin T. G., Bargteil A. W., O'Brien J. F.: A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3 (2004), 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. {GP07} Gross M., Pfister H.: Point-Based Graphics. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. {GRPS07} Goktekin T. G., Reisch J., Peachey D., Shah A.: An effects recipe for rolling a dough, cracking an egg and pouring a sauce. In SIGGRAPH '07: ACM SIGGRAPH 2007 sketches (New York, NY, USA, 2007), ACM, p. 67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. {HK08} Hieber S. E., Koumoutsakos P.: A Lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue. J. Comp. Phys. 227, 21 (2008), 9195--9215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. {Irv07} Irving G.: Methods for the Physically Based Simulation of Solids and Fluids. PhD thesis, Stanford University, 2007.Google ScholarGoogle Scholar
  10. {ITF04} Irving G., Teran J., Fedkiw R.: Invertible finite elements for robust simulation of large deformation. In The Proceedings of the Symposium on Computer Animation (2004), pp. 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. {KAG*05} Keiser R., Adams B., Gasser D., Bazzi P., Dutré P., Gross M.: A unified Lagrangian approach to solidfluid animation. In The Proceedings of the Symposium on Point-Based Graphics (2005), pp. 125--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. {LSSF06} Losasso F., Shinar T., Selle A., Fedkiw R.: Multiple interacting liquids. ACM Trans. Graph. 25, 3 (2006), 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. {MCG03} Müller M., Charypar D., Gross M.: Particle-based fluid simulation for interactive applications. In The Proceedings of the Symposium on Computer Animation (2003), pp. 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. {MKN*04} Müller M., Keiser R., Nealen A., Pauly M., Gross M., Alexa M.: Point based animation of elastic, plastic and melting objects. In The Proceedings of the Symposium on Computer Animation (2004), pp. 141--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. {OBH02} O'Brien J. F., Bargteil A. W., Hodgins J. K.: Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3 (2002), 291--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. {PKA*05} Pauly M., Keiser R., Adams B., Dutré; P., Gross M., Guibas L. J.: Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3 (2005), 957--964. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. {Rui07} Ruilova A.: Creating realistic cg honey. In SIGGRAPH '07: ACM SIGGRAPH 2007 posters (New York, NY, USA, 2007), ACM, p. 58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. {SH98} Simo J., Hughes T.: Computational Inelasticity. Springer-Verlag, 1998.Google ScholarGoogle Scholar
  19. {SSP07} Solenthaler B., Schläfli J., Pajarola R.: A unified particle model for fluid-solid interactions. Journal of Visualization and Computer Animation 18, 1 (2007), 69--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. {TF88} Terzopoulos D., Fleischer K.: Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In The Proceedings of ACM SIGGRAPH (1988), pp. 269--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. {Wil08} Williams B.: Fluid Surface Reconstruction from Particles. Master's thesis, University of British Columbia, 2008.Google ScholarGoogle Scholar
  22. {WT08} Wojtan C., Turk G.: Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3 (2008), 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A point-based method for animating elastoplastic solids

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation
        August 2009
        258 pages
        ISBN:9781605586106
        DOI:10.1145/1599470

        Copyright © 2009 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 1 August 2009

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate183of487submissions,38%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader