skip to main content
research-article

Packing circles and spheres on surfaces

Published:01 December 2009Publication History
Skip Abstract Section

Abstract

Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.

References

  1. Alliez, P., Colin de Verdière, É., Devillers, O., and Isenburg, M. 2005. Centroidal Voronoi diagrams for isotropic surface remeshing. Graphical Models 67, 204--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Aurenhammer, F. 1987. Power diagrams: Properties, algorithms and applications. SIAM J. Comput. 16, 1, 78--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bach, K., Ed. 1990. Radiolaria, vol. 33 of Publ. Inst. Lightweight Structures. Univ. Stuttgart. (series editor: Frei Otto).Google ScholarGoogle Scholar
  4. Bobenko, A., and Springborn, B. 2004. Variational principles for circle patterns and Koebe's theorem. Trans. Amer. Math. Soc. 356, 659--689.Google ScholarGoogle ScholarCross RefCross Ref
  5. Bobenko, A., and Suris, Yu. 2008. Discrete differential geometry: Integrable Structure. No. 98 in Graduate Studies in Math. American Math. Soc.Google ScholarGoogle Scholar
  6. Bobenko, A., Hoffmann, T., and Springborn, B. A. 2006. Minimal surfaces from circle patterns: Geometry from combinatorics. Annals Math. 164, 231--264.Google ScholarGoogle ScholarCross RefCross Ref
  7. Cecil, T. 1992. Lie Sphere Geometry. Springer.Google ScholarGoogle Scholar
  8. Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887: Cholmod, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35, 3, #22, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Gu, X. D., and Yau, S.-T. 2008. Computational Conformal Geometry. International Press.Google ScholarGoogle Scholar
  10. He, Z. X., and Schramm, O. 1993. Fixed points, Koebe uniformization and circle packings. Annals Math. 137, 369--406.Google ScholarGoogle ScholarCross RefCross Ref
  11. Jin, M., Kim, J., Luo, F., and Gu, X. D. 2008. Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graph. 14, 5, 1030--1043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jin, M., Zeng, W., Luo, F., and Gu, X. D. 2009. Computing Teichmüller shape space. IEEE Trans. Vis. Comput. Graph. 15, 3, 504--517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and Wang, W. 2006. Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graphics 25, 3, 681--689. Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., and Yang, C. 2009. On centroidal Voronoi tessellation -- energy smoothness and fast computation. ACM Trans. Graphics. to appear. CS Tech. Report 2008--18, Univ. Hong Kong. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Luo, F., Gu, X. D., and Dai, J. 2008. Variational Principles for Discrete Surfaces. International Press.Google ScholarGoogle Scholar
  16. Luo, F. 2004. Combinatorial Yamabe flow on surfaces. Commun. Contemp. Math 6, 765--780.Google ScholarGoogle ScholarCross RefCross Ref
  17. Pottmann, H., Asperl, A., Hofer, M., and Kilian, A. 2007. Architectural Geometry. Bentley Institute Press.Google ScholarGoogle Scholar
  18. Pottmann, H., Brell- Cokcan, S., and Wallner, J. 2007. Discrete surfaces for architectural design. In Curves and Surface Design: Avignon 2006. Nashboro Press, 213--234.Google ScholarGoogle Scholar
  19. Pottmann, H., Liu, Y., Wallner, J., Bobenko, A., and Wang, W. 2007. Geometry of multi-layer freeform structures for architecture. ACM Trans. Graphics 26, 3, #65, 1--11. Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pottmann, H., Kilian, A., and Hofer, M., Eds. 2008. AAG 2008 -- Advances in Architectural Geometry. Proceedings of the Conference in Vienna, September 13--16.Google ScholarGoogle Scholar
  21. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graphics 27, 3, #77, 1--11. Proc. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Spuybroek, L. 2004. NOX: Machining Architecture. Thames&Hudson.Google ScholarGoogle Scholar
  23. Stephenson, K. 2005. Introduction to Circle Packing. Cambridge Univ. Press.Google ScholarGoogle Scholar
  24. Toledo, S., 2003. TAUCS, a library of sparse linear solvers. C library, http://www.tau.ac.il/~stoledo/taucs/.Google ScholarGoogle Scholar
  25. Yang, Y.-L., Guo, R., Luo, F., Hu, S.-M., and Gu, X. D. 2009. Generalized discrete Ricci flow. Computer Graphics Forum 28, 7. to appear, Proc. Pacific Graphics.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Packing circles and spheres on surfaces

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader