skip to main content
research-article

Spatial relationship preserving character motion adaptation

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

This paper presents a new method for editing and retargeting motions that involve close interactions between body parts of single or multiple articulated characters, such as dancing, wrestling, and sword fighting, or between characters and a restricted environment, such as getting into a car. In such motions, the implicit spatial relationships between body parts/objects are important for capturing the scene semantics. We introduce a simple structure called an interaction mesh to represent such spatial relationships. By minimizing the local deformation of the interaction meshes of animation frames, such relationships are preserved during motion editing while reducing the number of inappropriate interpenetrations. The interaction mesh representation is general and applicable to various kinds of close interactions. It also works well for interactions involving contacts and tangles as well as those without any contacts. The method is computationally efficient, allowing real-time character control. We demonstrate its effectiveness and versatility in synthesizing a wide variety of motions with close interactions.

Skip Supplemental Material Section

Supplemental Material

tp034-10.mp4

mp4

53.9 MB

References

  1. Alexa, M. 2003. Differential coordinates for local mesh morphing and deformation. The Visual Computer 19, 2--3, 105--114.Google ScholarGoogle ScholarCross RefCross Ref
  2. Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. ACM Transactions on Graphics 22, 3 (Jul.), 587--594. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Badler, N. I., Palmer, M. S., and Bindiganavale, R. 1999. Animation control for real-time virtual humans. Communications of the ACM 42, 8, 64--73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bodenheimer, B., Rose, C., Rosenthal, S., and Pella., J. 1997. The process of motion capture: Dealing with the data. In Computer Animation and Simulation 97, 318.Google ScholarGoogle Scholar
  5. Bolz, J., Farmer, I., Grinspun, E., and Schröoder, P. 2003. Sparse matrix solvers on the gpu: conjugate gradients and multigrid. ACM Transactions on Graphics 22, 3 (Jul.), 917--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Callennec, B. L., and Boulic, R. 2004. Interactive motion deformation with prioritized constraints. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 163--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Choi, K.-J., and Ko, H.-S. 2000. Online motion retargeting. Journal of Visualization and Computer and Animation 11, 5, 223--235.Google ScholarGoogle ScholarCross RefCross Ref
  8. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Transactions on Graphics 27, 3 (Aug.), 82:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Davis, T. A. 2004. Algorithm 832: Umfpack, an unsymmetric-pattern multifrontal method. ACM Transactions on Mathematical Software 30, 2 (Jun.), 196--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Transactions on Graphics 22, 3 (Jul.), 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gleicher, M. 1997. Motion editing with spacetime constraints. In Proceedings of Symposium on Interactive 3D Graphics, 139--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gleicher, M. 1998. Retargetting motion to new characters. In Proceedings of SIGGRAPH 98, ACM Press/ACM SIGGRAPH, M. Cohen, Ed., Computer Graphics Proceedings, Annual Conference Series, ACM, 33--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Goto, K., and Van De Geijn, R. 2008. High-performance implementation of the level-3 blas. ACM Transactions on Mathematical Software 35, 1 (Jul.), 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ho, E. S. L., and Komura, T. 2009. Character motion synthesis by topology coordinates. Computer Graphics Forum 28, 2, 299--308.Google ScholarGoogle ScholarCross RefCross Ref
  15. Ho, E. S. L., and Komura, T. 2009. Indexing and retrieving motions of characters in close contact. IEEE Transactions on Visualization and Computer Graphics 15, 3 (May), 481--492. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Komura, T., Shinagawa, Y., and Kunii, T. L. 2000. Creating and retargetting motion by the musculoskeletal human body model. The Visual Computer, 5, 254--270.Google ScholarGoogle ScholarCross RefCross Ref
  17. Komura, T., Leung, H., and Kuffner, J. 2004. Animating reactive motions for biped locomotion. In Proceedings of ACM Virtual Reality Software and Technology, 32--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kwon, T., Lee, K. H., Lee, J., and Takahashi, S. 2008. Group motion editing. ACM Transactions on Graphics 27, 3 (Aug.), 80:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. LaValle, S., and Kuffner, J. 2001. Rapidly-exploring random trees: Progress and prospects. In Robotics: The Algorithmic Perspective. 4th Int'l Workshop on the Algorithmic Foundations of Robotics, 293--308.Google ScholarGoogle Scholar
  20. Lee, J., and Shin, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like figures. In Proceedings of SIGGRAPH 99, ACM Press/ACM SIGGRAPH, A. Rockwood, Ed., Computer Graphics Proceedings, Annual Conference Series, ACM, 39--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Liu, C. K., and Popović', Z. 2002. Synthesis of complex dynamic character motion from simple animations. ACM Transactions on Graphics 21, 3 (Jul.), 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Liu, C. K., Hertzmann, A., and Popovic, Z. 2006. Composition of complex optimal multi-character motions. In Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lyard, E., and Magnenat-Thalmann, N. 2008. Motion adaptation based on character shape. Computer Animation and Virtual Worlds 19, 3--4, 189--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Macchietto, A., Zordan, V., and Shelton, C. R. 2009. Momentum control for balance. ACM Transactions on Graphics 28, 3 (Aug.), 80:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Popović, Z., and Witkin, A. 1999. Physically based motion transformation. In Proceedings of SIGGRAPH 99, ACM Press/ACM SIGGRAPH, A. Rockwood, Ed., Computer Graphics Proceedings, Annual Conference Series, ACM, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Shapiro, A., Kallmann, M., and Faloutsos, P. 2007. Interactive motion correction and object manipulation. In Proceedings of ACM SIGGRAPH Symposium on Interactive 3D graphics and Games, 137--144. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2007. Mesh puppetry: Cascading optimization of mesh deformation with inverse kinematics. ACM Transactions on Graphics 26, 3 (Jul.), 81:1--9 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Shum, H. P. H., Komura, T., and Yadav, P. 2009. Angular momentum guided motion concatenation. Computer Animation and Virtual Worlds 20, 2--3, 385--394. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Si, H., and Gaertner, K. 2005. Meshing piecewise linear complexes by constrained delaunay tetrahedralizations. In Proceedings of the 14th International Meshing Roundtable, 147--163.Google ScholarGoogle Scholar
  30. Smith, R. 2005. Open dynamics engine. www.ode.org.Google ScholarGoogle Scholar
  31. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 179--188. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sumner, R. W., and Popovic, J. 2004. Deformation transfer for triangle meshes. ACM Transactions on Graphics 23, 3 (Aug.), 397--403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., and Guo, B. 2007. Gradient domain editing of deforming mesh sequences. ACM Transactions on Graphics, 26, 3 (Jul.), 84:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yamane, K., Kuffner, J., and Hodgins, J. 2004. Synthesizing animations of human manipulation tasks. ACM Transactions on Graphics 23, 3 (Aug.), 532--539. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zayer, R., Rössl, C., Karni, Z., and Seidel, H.-P. 2005. Harmonic guidance for surface deformation. Computer Graphics Forum 24, 3, 601--609.Google ScholarGoogle ScholarCross RefCross Ref
  36. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. 2005. Large mesh deformation using the volumetric graph laplacian. ACM Transactions on Graphics 24, 3 (Jul.), 496--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhou, K., Xu, W., Tong, Y., and Desbrun, M. 2010. Deformation transfer to multi-component objects. Computer Graphics Forum 29, 2.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Spatial relationship preserving character motion adaptation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 29, Issue 4
          July 2010
          942 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/1778765
          Issue’s Table of Contents

          Copyright © 2010 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 26 July 2010
          Published in tog Volume 29, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader