skip to main content
research-article

Interactive simulation of stylized human locomotion

Published:01 August 2008Publication History
Skip Abstract Section

Abstract

Animating natural human motion in dynamic environments is difficult because of complex geometric and physical interactions. Simulation provides an automatic solution to parts of this problem, but it needs control systems to produce lifelike motions. This paper describes the systematic computation of controllers that can reproduce a range of locomotion styles in interactive simulations. Given a reference motion that describes the desired style, a derived control system can reproduce that style in simulation and in new environments. Because it produces high-quality motions that are both geometrically and physically consistent with simulated surroundings, interactive animation systems could begin to use this approach along with more established kinematic methods.

Skip Supplemental Material Section

Supplemental Material

26.flv

flv

69 MB

a82-de_silva.mov

mov

24.5 MB

References

  1. Abdallah, M.; Goswami, A. 2005. A biomechanically motivated two-phase strategy for biped upright balance control. In International Conference on Robotics and Automation (ICRA), 1996--2001.Google ScholarGoogle ScholarCross RefCross Ref
  2. Abe, Y., da Silva, M., and Popović, J. 2007. Multiobjective control with frictional contacts. In Symposium on Computer Animation (SCA), 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Anitescu, M., Potra, F., and Stewart, D., 1998. Timestepping for threedimensional rigid body dynamics.Google ScholarGoogle Scholar
  4. Arikan, O., and Forsyth, D. A. 2002. Interactive motion generation from examples. ACM Transactions on Graphics 21, 3 (July), 483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Atkeson, C. G., and Morimoto, J. 2003. Nonparametric representation of policies and value functions: A trajectory-based approach. In Advances in Neural Information Processing Systems 15, S. T. S. Becker and K. Obermayer, Eds. MIT Press, Cambridge, MA, 1611--1618.Google ScholarGoogle Scholar
  6. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Computer Graphics (Proceedings of SIGGRAPH 94), ACM SIGGRAPH, Annual Conference Series, 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Barbič, J. 2007. Real-time Reduced Large-Deformation Models and Distributed Contact for Computer Graphics and Haptics. PhD thesis, Carnegie Mellon University, Pittsburgh, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Betts, J. T. 2001. Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Brotman, L. S., and Netravali, A. N. 1988. Motion interpolation by optimal control. In Computer Graphics (Proceedings of SIGGRAPH 88), 309--315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Da Silva, M., Abe, Y., and Popović, J. 2008. Simulation of human motion data using short-horizon model-predictive control. Computer Graphics Forum 27, 2. In press.Google ScholarGoogle ScholarCross RefCross Ref
  11. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of ACM SIGGRAPH 2001, Annual Conference Series, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Transactions on Graphics 22, 3 (July), 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Featherstone, R., and Orin, D. E. 2000. Robot dynamics: Equations and algorithms. In International Conference on Robotics and Automation (ICRA), 826--834.Google ScholarGoogle Scholar
  14. Full, R. J., and Koditschek, D. E. 1999. Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. The Journal of Experimental Biology 202, 3325--3332.Google ScholarGoogle Scholar
  15. Gill, P. E., Murray, W., and Saunders, M. A. 1997. User's guide for SQOPT 5.3: A fortran package for large-scale linear and quadratic programming. Tech. Rep. NA 97--4, University of California, San Diego.Google ScholarGoogle Scholar
  16. Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proceedings of ACM SIGGRAPH 95, Annual Conference Series, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jacobson, D., and Mayne, D. 1970. Differential Dynamic Programming, 1st ed. Elsevier, New York.Google ScholarGoogle Scholar
  19. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H. 2003. Resolved momentum control: humanoid motion planning based on the linear and angular momentum. 1644--1650.Google ScholarGoogle Scholar
  20. Kalman, R. E. 1960. Contributions to the theory of optimal control. Boletin de la Sociedad Matematica Mexicana 5, 102--119.Google ScholarGoogle Scholar
  21. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Transactions on Graphics 21, 3 (July), 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Laszlo, J. F., van de Panne, M., and Fiume, E. L. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proceedings of SIGGRAPH 96, Annual Conference Series, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lee, J., and Shin, S. Y. 1999. A hierarchical approach to interactive motion editing for human-like figures. In Computer Graphics (Proceedings of SIGGRAPH 99), ACM SIGGRAPH, Annual Conference Series, 39--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lewis, F., Abdallah, C., and Dawson, D. M. 1993. Control of Robot Manipulators, 1st ed. Macmillan, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Li, W., and Todorov, E. 2004. Iterative linear quadratic regulator design for nonlinear biological movement systems. In International Conference on Informatics in Control, Automation and Robotics, 222--229.Google ScholarGoogle Scholar
  26. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Transactions on Graphics 24, 3 (Aug.), 1071--1081. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. McCann, J., and Pollard, N. 2007. Responsive characters from motion fragments. ACM Transactions on Graphics 26, 3 (July), 6:1--6:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. McGhee, R. 1983. Vehicular legged locomotion. In Advances in Automation and Robotics, G. Saridis, Ed. JAI Press.Google ScholarGoogle Scholar
  29. Miura, H., and Shimoyama, I. 1984. Dynamic walk of a biped. International Journal of Robotics Research 3, 2, 60--74.Google ScholarGoogle ScholarCross RefCross Ref
  30. Ngo, J. T., and Marks, J. 1993. Spacetime constraints revisited. In Proceedings of ACM SIGGRAPH 2000, Annual Conference Series, 343--350. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Popović, Z., and Witkin, A. P. 1999. Physically based motion transformation. In Computer Graphics (Proceedings of SIGGRAPH 99), ACM SIGGRAPH, Annual Conference Series, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In Computer Graphics (Proceedings of SIGGRAPH 2000), ACM SIGGRAPH, Annual Conference Series, 209--218. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pratt, J., Carff, J., Drakunov, S., and Goswami, A. 2006. Capture point: A step toward humanoid push recovery. In International Conference on Humanoid Robots, 200--207.Google ScholarGoogle Scholar
  34. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Computer Graphics (Proceedings of SIGGRAPH 91), ACM SIGGRAPH, Annual Conference Series, 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Raibert, M. H. 1986. Legged Robots That Balance. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Safonova, A., Hodgins, J., and Pollard, N. 2004. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Transactions on Graphics 23, 3 (Aug.), 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Shapiro, A., Faloutsos, P., and Ng-Thow-Hing, V. 2005. Dynamic animation and control environment. In Proceedings of Graphics Interface (GI), 61--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for sylized planar bipedal walking. In International Conference on Robotics and Automation (ICRA), 2387--2392.Google ScholarGoogle Scholar
  39. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Transactions on Graphics 26, 3 (July), 107:1--107:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Stengel, R. F. 1994. Optimal Control and Estimation. Dover Books on Advanced Mathematics, New York, NY.Google ScholarGoogle Scholar
  41. Sulejmanpasić, A., and Popović, J. 2005. Adaptation of performed ballistic motion. ACM Transactions on Graphics 24, 1 (Jan.), 165--179. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tassa, Y., Erez, T., and Smart, W. 2008. Receding horizon differential dynamic programming. In Advances in Neural Information Processing Systems 20, J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds. MIT Press, Cambridge, MA, 1465--1472.Google ScholarGoogle Scholar
  43. Tedrake, R. L. 2004. Applied Optimal Control for Dynamically Stable Legged Locomotion. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Treuille, A., Lee, Y., and Popović, Z. 2007. Near-optimal character animation with continuous control. ACM Transactions on Graphics 26, 3 (July), 7:1--7:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wieber, P. B. 2002. On the stability of walking systems. In International Workshop on Humanoid and Human Friendly Robotics, 1--7.Google ScholarGoogle Scholar
  46. Winter, D. A. 1990. Biomechanics and Motor Control of Human Movement, 2nd ed. John Wiley and Sons, Inc., New York.Google ScholarGoogle Scholar
  47. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Computer Graphics (Proceedings of SIGGRAPH 88), vol. 22, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wooten, W. L., and Hodgins, J. K. 2000. Simulating leaping, tumbling, landing and balancing humans. International Conference on Robotics and Automation (ICRA), 656--662.Google ScholarGoogle Scholar
  49. Yamane, K., and Nakamura, Y. 2003. Dynamics filter - concept and implementation of online motion generator for human figures. Robotics and Automation, IEEE Transactions on 19, 3, 421--432.Google ScholarGoogle Scholar
  50. Yin, K., Cline, M., and Pai, D. K. 2003. Motion perturbation based on simple neuromotor control models. In Pacific Conference on Computer Graphics and Applications (PG), 445--449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Transactions on Graphics 26, 3 (July), 105:1--105:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Zordan, V. B., and Hodgins, J. K. 1999. Tracking and modifying upper-body human motion data with dynamic simulation. In Computer Animation and Simulation.Google ScholarGoogle Scholar
  53. Zordan, V. B., and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Symposium on Computer Animation (SCA), 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Interactive simulation of stylized human locomotion

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Transactions on Graphics
                ACM Transactions on Graphics  Volume 27, Issue 3
                August 2008
                844 pages
                ISSN:0730-0301
                EISSN:1557-7368
                DOI:10.1145/1360612
                Issue’s Table of Contents

                Copyright © 2008 ACM

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 1 August 2008
                Published in tog Volume 27, Issue 3

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader