skip to main content
research-article

Generalized biped walking control

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

We present a control strategy for physically-simulated walking motions that generalizes well across gait parameters, motion styles, character proportions, and a variety of skills. The control is realtime, requires no character-specific or motion-specific tuning, is robust to disturbances, and is simple to compute. The method works by integrating tracking, using proportional-derivative control; foot placement, using an inverted pendulum model; and adjustments for gravity and velocity errors, using Jacobian transpose control. High-level gait parameters allow for forwards-and-backwards walking, various walking speeds, turns, walk-to-stop, idling, and stop-to-walk behaviors. Character proportions and motion styles can be authored interactively, with edits resulting in the instant realization of a suitable controller. The control is further shown to generalize across a variety of walking-related skills, including picking up objects placed at any height, lifting and walking with heavy crates, pushing and pulling crates, stepping over obstacles, ducking under obstacles, and climbing steps.

Skip Supplemental Material Section

Supplemental Material

tp012-10.mp4

mp4

81.5 MB

References

  1. Abe, Y., da Silva, M., and Popović, J. 2007. Multiobjective control with frictional contacts. In Proc. ACM SIGGRAPH/EG Symposium on Computer Animation, 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Coros, S., Beaudoin, P., Yin, K., and van de Panne, M. 2008. Synthesis of constrained walking skills. ACM Trans. on Graphics (Proc. SIGGRAPH ASIA) 27, 5, Article 113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Coros, S., Beaudoin, P., and van de Panne, M. 2009. Robust task-based control policies for physics-based characters. ACM Trans. on Graphics (Proc. SIGGRAPH ASIA) 28, 5, Article 170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3, Article 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Hecker, C., Raabe, B., Enslow, R. W., DeWeese, J., Maynard, J., and van Prooijen, K. 2008. Real-time motion retargeting to highly varied user-created morphologies. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Hodgins, J. K., and Pollard, N. S. 1997. Adapting simulated behaviors for new characters. In Proc. ACM SIGGRAPH, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-based interactive motion synthesis. ACM Trans. on Graphics 28, 1, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H. 2003. Biped walking pattern generation by using preview control of zero-moment point. In Proc. IEEE Int'l Conf. on Robotics and Automation.Google ScholarGoogle Scholar
  9. Kulpa, R., Multon, F., and Arnaldi, B. 2005. Morphology-independent representation of motions for interactive human-like animation. In Computer Graphics Forum, vol. 24, 343--352.Google ScholarGoogle ScholarCross RefCross Ref
  10. Laszlo, J. F., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proc. ACM SIGGRAPH, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Macchietto, A., Zordan, V., and Shelton, C. R. 2009. Momentum control for balance. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Miura, H., and Shimoyama, I. 1984. Dynamic walk of a biped. Int'l J. of Robotics Research 3, 2.Google ScholarGoogle ScholarCross RefCross Ref
  13. Morimoto, J., Atkeson, C. G., Endo, G., and Cheng, G. 2007. Improving humanoid locomotive performance with learnt approximated dynamics via guassian processes for regression. In Proc. IEEE Int'l Conf. on Robotics and Automation.Google ScholarGoogle Scholar
  14. Muico, U., Lee, Y., Popovic', J., and Popovic', Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, Article 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. ODE. Open dynamics engine, http://www.ode.org/.Google ScholarGoogle Scholar
  16. Pratt, J. E., and Drakunov, S. V. 2007. Derivation and application of a conserved orbital energy for the inverted pendulum bipedal walking model. In Proc. IEEE Int'l Conf. on Robotics and Automation.Google ScholarGoogle Scholar
  17. Pratt, J. E., and Tedrake, R. 2006. Velocity based stability margins for fast bipedal walking. In Fast Motions in Biomechanics and Robots.Google ScholarGoogle Scholar
  18. Pratt, J., Chew, C., Torres, A., Dilworth, P., and Pratt, G. 2001. Virtual model control: An intuitive approach for bipedal locomotion. Int'l J. Robotics Research 20, 2, 129.Google ScholarGoogle ScholarCross RefCross Ref
  19. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Proc. ACM SIGGRAPH, 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Raibert, M. H. 1986. Legged Robots That Balance. MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In Proc. IEEE Int'l Conf. on Robotics and Automation.Google ScholarGoogle Scholar
  22. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3, Article 107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sunada, C., Argaez, D., Dubowsky, S., and Mavroidis, C. 1994. A coordinated jacobian transpose control for mobile multi-limbed robotic systems. In Proc. IEEE Int'l Conf. on Robotics and Automation, 1910--1915.Google ScholarGoogle Scholar
  24. Takenaka, T., Matsumoto, T., and Yoshiike, T. 2009. Real time motion generation and control for biped robot, first report: Walking gait pattern generation. In Proc. IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Tedrake, R., Zhang, T., and Seung, H. 2004. Stochastic policy gradient reinforcement learning on a simple 3D biped. In Proc. Int'l Conf. on Intelligent Robots and Systems, vol. 3.Google ScholarGoogle Scholar
  26. Tsai, Y.-Y., Lin, W.-C., Cheng, K. B., Lee, J., and Lee, T.-Y. 2010. Real-time physics-based 3d biped character animation using an inverted pendulum model. IEEE Trans. on Visualization and Computer Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, J., Fleet, D. J., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Trans. on Graphics (Proc. SIGGRAPH Asia). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3, Article 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Yin, K., Coros, S., Beaudoin, P., and van de Panne, M. 2008. Continuation methods for adapting simulated skills. ACM Transactions Graph. (Proc. SIGGRAPH) 27, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Generalized biped walking control

                  Recommendations

                  Comments

                  Login options

                  Check if you have access through your login credentials or your institution to get full access on this article.

                  Sign in

                  Full Access

                  • Published in

                    cover image ACM Transactions on Graphics
                    ACM Transactions on Graphics  Volume 29, Issue 4
                    July 2010
                    942 pages
                    ISSN:0730-0301
                    EISSN:1557-7368
                    DOI:10.1145/1778765
                    Issue’s Table of Contents

                    Copyright © 2010 ACM

                    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                    Publisher

                    Association for Computing Machinery

                    New York, NY, United States

                    Publication History

                    • Published: 26 July 2010
                    Published in tog Volume 29, Issue 4

                    Permissions

                    Request permissions about this article.

                    Request Permissions

                    Check for updates

                    Qualifiers

                    • research-article

                  PDF Format

                  View or Download as a PDF file.

                  PDF

                  eReader

                  View online with eReader.

                  eReader