skip to main content
research-article

Feature-based locomotion controllers

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

This paper introduces an approach to control of physics-based characters based on high-level features of movement, such as center-of-mass, angular momentum, and end-effectors. Objective terms are used to control each feature, and are combined by a prioritization algorithm. We show how locomotion can be expressed in terms of a small number of features that control balance and end-effectors. This approach is used to build controllers for human balancing, standing jump, and walking. These controllers provide numerous benefits: human-like qualities such as arm-swing, heel-off, and hip-shoulder counter-rotation emerge automatically during walking; controllers are robust to changes in body parameters; control parameters and goals may be modified at run-time; control parameters apply to intuitive properties such as center-of-mass height; and controllers may be mapped onto entirely new bipeds with different topology and mass distribution, without modifications to the controller itself. No motion capture or off-line optimization process is used.

Skip Supplemental Material Section

Supplemental Material

tp015-10.mp4

mp4

62.8 MB

References

  1. Abe, Y., and Popović, J. 2006. Interactive Animation of Dynamic Manipulation. In Proc. SCA, 195--204. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Abe, Y., da Silva, M., and Popović, J. 2007. Multiobjective Control with Frictional Contacts. In Proc. SCA, 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Adamczyk, P. G., Collins, S. H., and Kuo, A. D. 2006. The advantages of a rolling foot in human walking. J. Experimental Biology 209, 20, 3953--3963.Google ScholarGoogle ScholarCross RefCross Ref
  4. Azevedo, C., Poignet, P., and Espiau, B. 2002. Moving horizon control for biped robots without reference trajectory. In Int. Conf. Robotics and Automation, 2762--2767.Google ScholarGoogle Scholar
  5. Baerlocher, P., and Boulic, R. 2004. An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. The Visual Computer 20, 6, 402--417. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Baraff, D. 1994. Fast contact force computation for nonpenetrating rigid bodies. In Proc. SIGGRAPH, 23--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive Simulation of Stylized Human Locomotion. ACM Trans. Graphics 27, 3, 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. da Silva, M., Yeuhi, A., and Popović, J. 2008. Simulation of Human Motion Data using Short-Horizon Model-Predictive Control. Computer Graphics Forum 27, 2, 371--380.Google ScholarGoogle ScholarCross RefCross Ref
  9. de Lasa, M., and Hertzmann, A. 2009. Prioritized Optimization for Task-Space Control. In Proc. IROS. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable Controllers for Physics-Based Character Animation. In Proc. SIGGRAPH, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fang, A. C., and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. Graphics, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Featherstone, R. 2008. Rigid Body Dynamics Algorithms. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fujimoto, Y., Obata, S., and Kawamura, A. 1998. Robust biped walking with active interaction control between foot and ground. In Int. Conf. Robotics and Automation, 2030--2035.Google ScholarGoogle Scholar
  14. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex Rigid Bodies with Stacking. ACM Trans. Graphics 22, 3, 871--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Herr, H., and Popovic, M. 2008. Angular momentum in human walking. J. Experimental Biology 211, 467--481.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hodgins, J. K., and Pollard, N. S. 1997. Adapting Simulated Behaviors for New Characters. In Proc. SIGGRAPH, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proc. SIGGRAPH, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hsu, P., Mauser, J., and Sastry, S. 1989. Dynamic control of redundant manipulators. J. Robotic Systems 6, 2, 133--148.Google ScholarGoogle ScholarCross RefCross Ref
  19. Jain, S., Ye, Y., and Liu, C. K. 2009. Optimization-Based Interactive Motion Synthesis. ACM Trans. Graphics 28, 1, 1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kanoun, O., Lamiraux, F., Wieber, P.-B., Kanehiro, F., Yoshida, E., and Laumond, J.-P. 2009. Prioritizing linear equality and inequality systems: application to local motion planning for redundant robots. In Int. Conf. Robotics and Automation, 724--729. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Khatib, O. 1987. A Unified Approach to Motion and Force Control of Robot Manipulators: The Operational Space Formulation. J. Robotics and Automation 3, 1, 43--53.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kudoh, S., Komura, T., and Ikeuchi, K. 2006. Stepping Motion for a Human-like Character to Maintain Balance against Large Perturbations. In Int. Conf. Robotics and Automation, 2661--2666.Google ScholarGoogle Scholar
  23. Laszlo, J., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proc. SIGGRAPH 1996, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Liegeois, A. 1977. Automatic supervisory control of the configuration and behavior of multibody mechanisms. Trans. on Systems, Man and Cybernetics 7, 12, 868--871.Google ScholarGoogle ScholarCross RefCross Ref
  25. Macchietto, A., Zordan, V., and Shelton, C. 2009. Momentum Control for Balance. ACM Trans. Graphics 28, 3, 80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mansard, N., and Khatib, O. 2008. Continuous control law from unilateral constraints. In Int. Conf. Robotics and Automation, 3359--3364.Google ScholarGoogle Scholar
  27. Marler, R. T., and Arora, J. S. 2004. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 26, 6, 369--395.Google ScholarGoogle ScholarCross RefCross Ref
  28. Mordatch, I., de Lasa, M., and Hertzmann, A. 2010. Robust Physics-Based Locomotion Using Low-Dimensional Planning. ACM Trans. Graphics 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware Nonlinear Control of Dynamic Characters. ACM Trans. Graphics 28, 3, 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Nakamura, Y., Hanafusa, H., and Yoshikawa, T. 1987. Task-Priority Based Redundancy Control of Robot Manipulators. Int. J. Robotics Research 6, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Nakanishi, J., Cory, R., Mistry, M., Peters, J., and Schaal, S. 2008. Operational Space Control: A Theoretical and Empirical Comparison. Int. J. Robotics Research 27, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Orin, D., and Goswami, A. 2008. Centroidal Momentum Matrix of a Humanoid Robot: Structure and Propreties. In Int. Conf. on Robotics and Intelligent Systems.Google ScholarGoogle Scholar
  33. Popovic, M., Hofmann, A., and Herr, H. 2004. Angular Momentum Regulation during Human Walking: Biomechanics and Control. In Int. Conf. Robotics and Automation.Google ScholarGoogle Scholar
  34. Pozzo, T., Berthoz, A., and Lefort, L. 1990. Head stabilization during various locomotor tasks in humans. Exp. Brain Res. 82, 97--106.Google ScholarGoogle ScholarCross RefCross Ref
  35. Pratt, J., Chew, C.-M., Torres, A., Dilworth, P., and Pratt, G. 2001. Virtual Model Control: An intuitive approach for bipedal locomotion. Int. J. Robotics Research.Google ScholarGoogle Scholar
  36. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. SIGGRAPH Comput. Graph. 25, 4, 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sentis, L. 2007. Synthesis and Control of Whole-Body Behaviors in Humanoid Systems. PhD thesis, Stanford. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sharon, D., and van de Panne, M. 2005. Synthesis of Controllers for Stylized Planar Bipedal Walking. In Int. Conf. Robotics and Automation, 2387--2392.Google ScholarGoogle Scholar
  39. Shkolnik, A., and Tedrake, R. 2008. High-Dimensional Underactuated Motion Planning via Task Space Control. Int. Conf. on Robotics and Intelligent Systems, 3762--3768.Google ScholarGoogle Scholar
  40. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating Biped Behaviors from Human Motion Data. ACM Trans. Graphics 26, 3, 107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Todorov, E., and Jordan, M. I. 2002. Optimal feedback control as a theory of motor coordination. Nature Neuroscience 5, 11, 1226--1235.Google ScholarGoogle ScholarCross RefCross Ref
  42. Wang, J. M., Fleet, D. J., and Hertzmann, A. 2009. Optimizing Walking Controllers. ACM Trans. Graphics 28, 5, 168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Winter, D. A. 2004. Biomechanics and Motor Control of Human Movement, 3rd ed. Wiley.Google ScholarGoogle Scholar
  44. Wooten, W. 1998. Simulation of Leaping, Tumbling, Landing, and Balancing Humans. PhD thesis, Georgia Institute of Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple Biped Locomotion Control. ACM Trans. Graphics 26, 3, 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Zordan, V., and Hodgins, J. K. 2002. Motion capture-driven simulations that hit and react. In Proc. SCA, 89--96. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Feature-based locomotion controllers

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 29, Issue 4
        July 2010
        942 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1778765
        Issue’s Table of Contents

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 26 July 2010
        Published in tog Volume 29, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader