skip to main content
research-article

Robust physics-based locomotion using low-dimensional planning

Published:26 July 2010Publication History
Skip Abstract Section

Abstract

This paper presents a physics-based locomotion controller based on online planning. At each time-step, a planner optimizes locomotion over multiple phases of gait. Stance dynamics are modeled using a simplified Spring-Load Inverted (SLIP) model, while flight dynamics are modeled using projectile motion equations. Full-body control at each instant is optimized to match the instantaneous plan values, while also maintaining balance. Different types of gaits, including walking, running, and jumping, emerge automatically, as do transitions between different gaits. The controllers can traverse challenging terrain and withstand large external disturbances, while following high-level user commands at interactive rates.

Skip Supplemental Material Section

Supplemental Material

tp098-10.mp4

mp4

36.7 MB

References

  1. Abe, Y., da Silva, M., and Popović, J. 2007. Multiobjective Control with Frictional Contacts. In Proc. SCA, 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Adamczyk, P. G., Collins, S. H., and Kuo, A. D. 2006. The advantages of a rolling foot in human walking. J. Exp. Biology 209, 3953--3963.Google ScholarGoogle ScholarCross RefCross Ref
  3. Alexander, R. M. 1980. Optimum walking techniques for quadrupeds and bipeds. J. Zoology 192, 97--117.Google ScholarGoogle ScholarCross RefCross Ref
  4. Chestnutt, J. 2007. Navigation Planning for Legged Robots. PhD thesis, Carnegie Mellon University.Google ScholarGoogle Scholar
  5. Collins, S., Ruina, A., Tedrake, R., and Wisse, M. 2005. Efficient Bipedal Robots Based on Passive Dynamic Walkers. Science 307, 1082--1085.Google ScholarGoogle ScholarCross RefCross Ref
  6. Coros, S., Beaudoin, P., and van de Panne, M. 2009. Robust Task-based Control Policies for Physics-based Characters. ACM Trans. Graphics 28, 5, 170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. da Silva, M., Abe, Y., and Popović, J. 2008. Interactive Simulation of Stylized Human Locomotion. ACM Trans. Graphics 27, 3, 82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. da Silva, M., Yeuhi, A., and Popović, J. 2008. Simulation of Human Motion Data using Short-Horizon Model-Predictive Control. Proc. Eurographics 27, 2.Google ScholarGoogle ScholarCross RefCross Ref
  9. de Lasa, M., Mordatch, I., and Hertzmann, A. 2010. Feature-Based Locomotion Controllers. ACM Trans. Graphics 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proc. SIGGRAPH, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Full, R. J., and Koditschek, D. E. 1999. Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. J. Exp. Biology 202, 3325--3332.Google ScholarGoogle Scholar
  12. Hansen, N. 2006. The CMA Evolution Strategy: A Comparing Review. In Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. 75--102.Google ScholarGoogle Scholar
  13. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. In Proc. SIGGRAPH, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kajita, S., Matsumoto, O., and Saigo, M. 2001. Real-time 3D walking pattern generation for a biped robot with telescopic legs. In Proc. ICRA, 2299--2306.Google ScholarGoogle Scholar
  15. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H. 2003. Biped Walking Pattern Generation by using Preview Control of Zero-Moment Point. In Proc. ICRA, 1620--1626.Google ScholarGoogle Scholar
  16. Kuffner, J., Nishikawa, K., Kagami, S., Inaba, M., and Inoue, H. 2003. Motion Planning for Humanoid Robots. In Proc. ISRR, 365--374.Google ScholarGoogle Scholar
  17. Laszlo, J., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. In Proc. SIGGRAPH, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning Physics-Based Motion Style with Nonlinear Inverse Optimization. ACM Trans. Graphics 24, 3, 1071--1081. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Macchietto, A., Zordan, V., and Shelton, C. 2009. Momentum Control for Balance. ACM Trans. Graphics 28, 3, 80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. McGeer, T. 1990. Passive Dynamic Walking. Int. J. Robotics Research 9, 2, 62--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware Nonlinear Control of Dynamic Characters. ACM Trans. Graphics 28, 3, 81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pratt, J., and Tedrake, R. 2005. Velocity-Based Stability Margins for Fast Bipedal Walking. In Fast Motions in Robotics and Biomechanics--Optimization and Feedback Control, vol. 340, 299--324.Google ScholarGoogle ScholarCross RefCross Ref
  23. Pratt, J., Carff, J., Drakunov, S., and Goswami, A. 2006. Capture Point: A Step toward Humanoid Push Recovery. In Proc. Humanoid Robots, 200--207.Google ScholarGoogle Scholar
  24. Raibert, M. H., and Hodgins, J. K. 1991. Animation of dynamic legged locomotion. In Proc. SIGGRAPH 1991, 349--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Ramamoorthy, S., and Kuipers, B. 2008. Trajectory Generation for Dynamic Bipedal Walking through Qualitative Model Based Manifold Learning. In Proc. ICRA, 359--366.Google ScholarGoogle Scholar
  26. Rebula, J., Canas, F., Pratt, J., and Goswami, A. 2007. Learning Capture Points for Humanoid Push Recovery. In Proc. Humanoid Robots, 65--72.Google ScholarGoogle Scholar
  27. Schwind, W. J., and Koditschek, D. R. 2000. Approximating the stance map of a 2-DOF monoped runner. J. Nonlinear Science, 533--568.Google ScholarGoogle Scholar
  28. Sok, K. W., Kim, M., and Lee, J. 2007. Simulating Biped Behaviors from Human Motion Data. ACM Trans. Graphics 26, 3, 107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Srinivasan, M., and Ruina, A. 2006. Computer optimization of a minimal biped model discovers walking and running. Nature 439, 7072, 72--75.Google ScholarGoogle Scholar
  30. Tsai, Y.-Y., Lin, W.-C., Cheng, K. B., Lee, J., and Lee, T.-Y. 2010. Real-Time Physics-Based 3D Biped Character Animation Using an Inverted Pendulum Model. Trans. Visualization and Computer Graphics 16, 325--337. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wampler, K., and Popović, Z. 2009. Optimal Gait and Form for Animal Locomotion. ACM Trans. Graphics 28, 3, 60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Witkin, A., and Kass, M. 1988. Spacetime Constraints. In Proc. SIGGRAPH, vol. 22, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yamane, K., and Hodgins, J. 2009. Simultaneous Tracking and Balancing of Humanoid Robots for Imitating Human Motion Capture Data. Proc. IROS, 2510--2517. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yin, K., Loken, K., and van de Panne, M. 2007. SIMBI-CON: Simple Biped Locomotion Control. ACM Trans. Graphics 26, 3, 81. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Robust physics-based locomotion using low-dimensional planning

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 29, Issue 4
        July 2010
        942 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/1778765
        Issue’s Table of Contents

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 26 July 2010
        Published in tog Volume 29, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader