skip to main content
research-article

Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization

Published:15 December 2010Publication History
Skip Abstract Section

Abstract

We optimize automultiscopic displays built by stacking a pair of modified LCD panels. To date, such dual-stacked LCDs have used heuristic parallax barriers for view-dependent imagery: the front LCD shows a fixed array of slits or pinholes, independent of the multi-view content. While prior works adapt the spacing between slits or pinholes, depending on viewer position, we show both layers can also be adapted to the multi-view content, increasing brightness and refresh rate. Unlike conventional barriers, both masks are allowed to exhibit non-binary opacities. It is shown that any 4D light field emitted by a dual-stacked LCD is the tensor product of two 2D masks. Thus, any pair of 1D masks only achieves a rank-1 approximation of a 2D light field. Temporal multiplexing of masks is shown to achieve higher-rank approximations. Non-negative matrix factorization (NMF) minimizes the weighted Euclidean distance between a target light field and that emitted by the display. Simulations and experiments characterize the resulting content-adaptive parallax barriers for low-rank light field approximation.

References

  1. Bell, G. P., Craig, R., Paxton, R., Wong, G., and Galbraith, D. 2008. Beyond flat panels: Multi-layered displays with real depth. SID DIGEST 39, 1, 352--355.Google ScholarGoogle ScholarCross RefCross Ref
  2. Blondel, V. D., Ho, N.-D., and van Dooren, P. 2008. Weighted nonnegative matrix factorization and face feature extraction. Image and Vision Computing.Google ScholarGoogle Scholar
  3. Brady, D. J., Pitsianis, N. P., and Sun, X. 2004. Reference structure tomography. J. Opt. Soc. Am. A 21, 7, 1140--1147.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cabral, B., and Leedom, L. C. 1993. Imaging vector fields using line integral convolution. In ACM SIGGRAPH, 263--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In ACM SIGGRAPH, 307--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chu, M., Diele, F., Plemmons, R., and Ragni, S. 2004. Optimality, computation, and interpretation of nonnegative matrix factorizations. SIAM Journal on Matrix Analysis.Google ScholarGoogle Scholar
  7. Dodgson, N. A. 2009. Analysis of the viewing zone of multiview autostereoscopic displays. In SPIE Stereoscopic Displays and Applications XIII, 254--265.Google ScholarGoogle Scholar
  8. Garg, G., Talvala, E.-V., Levoy, M., and Lensch, H. P. A. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In EGSR, 251--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hersch, R. D., and Chosson, S. 2004. Band moiré images. ACM Trans. Graph. 23, 3, 239--247. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hirsch, M., Lanman, D., Holtzman, H., and Raskar, R. 2009. BiDi screen: A thin, depth-sensing LCD for 3D interaction using lights fields. ACM Trans. Graph. 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hoshino, H., Okano, F., Isono, H., and Yuyama, I. 1998. Analysis of resolution limitation of integral photography. J. Opt. Soc. Am. A 15, 8, 2059--2065.Google ScholarGoogle ScholarCross RefCross Ref
  12. Isono, H., Yasuda, M., and Sasazawa, H. 1993. Autostereoscopic 3-D display using LCD-generated parallax barrier. Electronics and Communications in Japan 76, 7, 77--84.Google ScholarGoogle Scholar
  13. Ives, F. E., 1903. Parallax stereogram and process of making same. United States Patent 725,567.Google ScholarGoogle Scholar
  14. Jacobs, A., Mather, J., Winlow, R., Montgomery, D., Jones, G., Willis, M., Tillin, M., Hill, L., Khazova, M., Stevenson, H., and Bourhill, G. 2003. 2D/3D switchable displays. Sharp Technical Journal, 4, 15--18.Google ScholarGoogle Scholar
  15. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360° light field display. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kim, Y., Kim, J., Kang, J.-M., Jung, J.-H., Choi, H., and Lee, B. 2007. Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Optics Express 15, 26, 18253--18267.Google ScholarGoogle ScholarCross RefCross Ref
  17. Konrad, J., and Halle, M. 2007. 3-D displays and signal processing. IEEE Signal Processing Magazine 24, 6, 97--111.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lanman, D., Raskar, R., Agrawal, A., and Taubin, G. 2008. Shield fields: Modeling and capturing 3D occluders. ACM Trans. Graph. 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, D. D., and Seung, H. S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 788--791.Google ScholarGoogle ScholarCross RefCross Ref
  20. Levin, A., Hasinoff, S. W., Green, P., Durand, F., and Freeman, W. T. 2009. 4D frequency analysis of computational cameras for depth of field extension. In ACM SIGGRAPH, 1--14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In ACM SIGGRAPH, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Levoy, M., Zhang, Z., and McDowall, I. 2009. Recording and controlling the 4D light field in a microscope using microlens arrays. Journal of Microscopy 235, 2, 144--162.Google ScholarGoogle ScholarCross RefCross Ref
  23. Lippmann, G. 1908. Epreuves reversible donnant la sensation du relief. Journal of Physics 7, 4, 821--825.Google ScholarGoogle Scholar
  24. Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., and Hanrahan, P. 2005. Light field photography with a hand-held plenoptic camera. Tech. rep., Stanford University.Google ScholarGoogle Scholar
  25. Ozaktas, H. M., Yüksel, S., and Kutay, M. A. 2002. Linear algebraic theory of partial coherence: Discrete fields and measures of partial coherence. J. Opt. Soc. Am. A 19, 8, 1563--1571.Google ScholarGoogle ScholarCross RefCross Ref
  26. Perlin, K., Paxia, S., and Kollin, J. S. 2000. An autostereoscopic display. In ACM SIGGRAPH, 319--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Persistence of Vision Pty. Ltd., 2004. Persistence of vision raytracer (version 3.6). http://www.povray.org.Google ScholarGoogle Scholar
  28. Peterka, T., Kooima, R. L., Sandin, D. J., Johnson, A., Leigh, J., and DeFanti, T. A. 2008. Advances in the dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system. IEEE TVCG 14, 3, 487--499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Slinger, C., Cameron, C., and Stanley, M. 2005. Computer-generated holography as a generic display technology. IEEE Computer 38, 8, 46--53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Srebro, N., and Jaakkola, T. 2003. Weighted low-rank approximations. In ICML, 720--727.Google ScholarGoogle Scholar
  31. Stanford Computer Graphics Laboratory, 2008. The Stanford light field archive. http://lightfield.stanford.edu.Google ScholarGoogle Scholar
  32. Veeraraghavan, A., Raskar, R., Agrawal, A., Mohan, A., and Tumblin, J. 2007. Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aperture refocusing. ACM Trans. Graph. 26, 3, 69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Woodgate, G. J., and Harrold, J. 2003. High efficiency reconfigurable 2D/3D autostereoscopic display. In SID DIGEST.Google ScholarGoogle Scholar
  34. Woods, A. J., and Sehic, A. 2009. The compatibility of LCD TVs with time-sequential stereoscopic 3D visualization. In SPIE Stereoscopic Displays and Applications XX.Google ScholarGoogle Scholar
  35. Zhang, T., Fang, B., Liu, W., Tang, Y. Y., He, G., and Wen, J. 2008. Total variation norm-based nonnegative matrix factorization for identifying discriminant representation of image patterns. Neurocomputing 71, 10--12, 1824--1831. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zwicker, M., Vetro, A., Yea, S., Matusik, W., Pfister, H., and Durand, F. 2007. Resampling, antialiasing, and compression in multiview 3-D displays. IEEE Signal Processing Magazine 24, 6, 88--96.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 29, Issue 6
    December 2010
    480 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/1882261
    Issue’s Table of Contents

    Copyright © 2010 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 15 December 2010
    Published in tog Volume 29, Issue 6

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader